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Great efforts have been devoted to causal discovery from observational data, and it is well 
known that introducing some background knowledge attained from experiments or human 
expertise can be very helpful. However, it remains unknown that what causal relations are 
identifiable given background knowledge in the presence of latent confounders. In this paper, 
we solve the problem with sound and complete orientation rules when the background 
knowledge is given in a local form. Furthermore, based on the solution to the problem, 
this paper proposes two applications that are of independent interests. One is that we give 
a maximal ancestral graph (MAG) listing algorithm, to output all the MAGs consistent to 
the observational data in the presence of latent variables. The other application is that we 
present a general active learning framework for causal discovery in the presence of latent 
confounders, where we propose a baseline criterion to select the intervention variable with 
a Metropolis-Hastings MAG-sampling method. Experiments validate the efficiency of the 
proposed MAG listing method and the effectiveness of the active learning framework.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Causality has garnered significant attention in recent years due to its applications in various fields such as decision-
making [1–4], fairness [5,6], and anomaly diagnosis [7,8]. Moreover, it has also served as a source of inspiration for machine 
learning studies in open environments [9], given its ability to capture the invariant underlying mechanisms of the physical 
world [10,11]. In Pearl’s causality framework [12], an important problem is causal discovery, i.e., learning the causal graph to 
represent causal relations among the variables [13–17]. However, identifying all causal relations solely from observational 
data is generally infeasible, unless we make some additional assumptions [18–20] or exploit the abundant information in 
multiple or dynamic environments [21,22].

In light of the uncertainty of the causal relations, a common practice to reveal them is introducing background knowledge, 
which is called BK for short. BK can be attained from experiments or human expertise. When experiments are available, 
additional causal relations can be learned from interventional data [23–31]. Also, if certain variables in the causal discovery 
task are well-understood by humans, their expertise can be helpful [32]. For example, if we are studying the causal relations 
among some variables including sales and prices, the causal relations such as price causes sales can be obtained directly 
based on human expertise.
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When BK is available in addition to observational data, a fundamental problem is: what causal relations are identifiable in 
the presence of latent variables? It is fundamental for its implication on the maximally identifiable causal knowledge with the 
observational data and BK. Its difficulty results from the fact that, in addition to BK itself, some other causal relations can 
also be learned when incorporating BK. For example, they can be identified on the basis of some restrictions, such as the 
causal relations are acyclic. It is quite challenging to find the complete characterization for such additional causal knowledge 
in the presence of latent variables, since it must be proved that there does not exist any unidentified “common causal 
relations” among all the causal graphs consistent to the observational data and BK. Unfortunately, the problem remains open.

In this paper, we solve the problem with sound and complete orientation rules when BK is given in a local form. In the 
presence of latent variables, a partial ancestral graph (PAG) can be learned by FCI algorithm from observational data [33–35]. 
PAG can imply the existence of causal relation between any two variables but not necessarily the causal direction. We say BK 
is local given a PAG, if when the BK contains the causal information with respect to a variable X , for each variable adjacent 
to X in the PAG, the BK implies whether X causes it or not. The local BK is common in real tasks. For example, when 
we obtain a PAG P with observational data that has some indeterminate causal relations, a conventional method to reveal 
them is to introduce active intervention on some variable X [36,23,25]. In this case, for each edge X ◦− ∗ V in P , we can 
determine X ←∗V or X −∗V by testing whether P (V |do(X = x)) = P (V ). Local BK can be obtained from human expertise 
as well. For instance, if a PAG P implies the existence of causal relations between price and sales, number of customers, 
and inventory, it is widely recognized among business professionals that price causes sales and the number of customers, 
but not inventory. Given a PAG and local BK, we propose a set of orientation rules to determine some causal directions in 
the PAG. Under the assumption of absence of selection bias, we prove that the rules are sound and complete, which means 
that all the identifiable causal relations given available information are exactly those determined by the proposed rules, thus 
closing the problem given local BK.

The establishment of complete orientation rules compatible with local BK inspires two (theoretical) applications. One is 
that we propose a method to list all the maximal ancestral graphs (MAG)1 consistent to a PAG P . The method is useful in 
many real applications, such as identifying possible causal effects in a PAG [37–39] or causal graph sampling [23,40]. It can 
also help verifying some PAG-related theoretical results or methods [41–43]. There have been mature methods for efficient 
directed acyclic graph listing [44], but it remains unknown for MAGs. A key result we build is the necessary and sufficient
conditions for the existence of MAGs consistent to P with a given local structure, through which we can find all the MAGs 
efficiently by determining all the local structure of each vertex recursively.

The other application is that we present the first general active learning framework for identifying an MAG with active 
interventions. Bringing active learning into causal discovery has been shown successful for causal DAGs [23,45,46], but ac-
tively discovering MAGs remains untouched due to the lack of complete orientation rules, which are exactly what we present 
in this paper. Therefore, our work lays the theoretical foundations for, and propose the first active learning framework for 
discovering MAGs. In light of the expensive cost of interventions, we hope to identify an MAG with as fewer interventions 
as possible. Hence we present a baseline maximal entropy criterion, equipped with Metropolis-Hastings MAG-sampling, to 
select the intervention variable.

Overall, our contributions in this paper are threefold:

(1) We present the sound and complete orientation rules for causal identification given local background knowledge in the 
presence of latent confounders.

(2) We propose an efficient method to list MAGs consistent to a PAG.
(3) We give the first active learning framework for causal discovery that is applicable when latent variables exist.

A preliminary version of this work appeared in a conference paper [40]. Compared with the original version, we propose 
an additional efficient MAG listing method. We present the necessary and sufficient conditions for the existence of MAGs 
consistent to a PAG with a given local structure, through which we can find all the MAGs by determining local structure 
recursively. In addition, we improve the Metropolis-Hastings MAG-sampling method in the active learning framework such 
that all the sampled MAGs by the method in this paper are valid MAGs. We also conduct more experiments to validate the 
effectiveness and efficiency of our method.

Related works. In the literature, Meek [47] established sound and complete rules, generally called Meek rules, for causal 
identification given BK under causal sufficiency assumption. The assumption requires that there are no latent variables that 
cause more than one observed variable simultaneously. Causal sufficiency is untestable in practice. And it is quite often that 
there are latent variables in many real tasks. Jaber et al. [29] investigated the complete algorithm to learn a graph with 
solid results when there are additional interventional distribution, where the exact interventional distribution is needed. In 
this paper, BK is in the form of local marks. As shown by Jaber et al. [29], Wang and Zhou [30], the learned marks by exact 
interventional distribution can be beyond the local marks. Andrews et al. [48] showed that FCI algorithm is complete given 
tiered BK, where all variables can be partitioned into disjoint sets with explicit causal order. Tiered BK is totally different 
from local BK. We discuss it at the end of Section 3.

1 MAG is generally used to represent causal relations when there are latent variables.
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2. Preliminary

A graph G = (V, E) consists of a set of vertices V = {V 1, · · · , V p} and a set of edges E. For any subset V′ ⊆ V, the subgraph 
(of G) induced by V′ is GV′ = (V′, EV′ ), where EV′ is the set of edges in E whose both endpoints are in V′ . For a graph G , 
V(G) denotes the set of vertices in G . G is a complete graph if there is an edge between any two vertices. The subgraph 
induced by an empty set is also a complete graph. G[−V′] denotes the subgraph GV\V′ induced by V\V′ . Usually, bold letter 
(e.g., V) denotes a set of vertices and normal letter (e.g., V ) denotes a vertex. A graph is chordal if any cycle of length four 
or more has a chord, which is an edge joining two vertices that are not consecutive in the cycle. If G = (V, E) is chordal, 
the subgraph of G induced by V′ ⊆ V is chordal.

A graph G is mixed if the edges in G are either directed → or bi-directed ↔. The two ends of an edge are called 
marks and have two types arrowhead or tail. A graph is a partial mixed graph (PMG) if it contains directed edges, bi-directed 
edges, and edges with circles (◦). The circle implies that the mark here could be either arrowhead or tail but is indefinite. 
V i is adjacent to V j in G if there is an edge between V i and V j . A path in a graph G is a sequence of distinct vertices 
〈V 0, · · · , Vn〉 such that for 0 ≤ i ≤ n − 1, V i and V i+1 are adjacent in G . An edge in the form of V i ◦− ◦ V j is a circle edge. The 
circle component in G is the subgraph consisting of all the ◦ −◦ edges in G . V i and V j are in a connected circle component
in G if they are connected in the circle component in G . A circle path is a path comprised of only circle edges. A vertex V i

is a parent of a vertex V j if there is V i → V j . A directed path from V i to V j is a path comprised of directed edges pointing 
to the direction of V j . A possible directed path from V i to V j is a path without an arrowhead at the mark close to V i and 
without a tail at the mark close to V j on every edge in the path. V i is an ancestor/possible ancestor of V j if there is a 
directed path/possible directed path from V i to V j or V i = V j . V i is a descendant/possible descendant of V j if there is a directed 
path/possible directed path from V j to V i or V j = V i . Denote the set of parent/ancestor/possible ancestor/descendant/possible 
descendant of V i in G by Pa(V i, G)/Anc(V i, G)/PossAn(V i, G)/De(V i, G)/PossDe(V i, G). If V i ∈ Anc(V j, G) and V i ← V j /V i ↔
V j , it forms a directed cycle/almost directed cycle. ∗ is a wildcard that denotes any of the marks (arrowhead, tail, and circle). 
We make a convention that when we say an edge is in the form of ◦ −∗, the ∗ here cannot be a tail since in this case the 
circle can be replaced by an arrowhead due to the assumption of no selection bias. Denote the set of vertices adjacent to 
V i in G by Adj(V i, G). Consider a graph G comprised of only circle edges, a vertex V i in G is called simplicial if Adj(V i, G)

induces a complete subgraph of G , and a perfect elimination order of G is an ordering σ = (V 1, . . . , Vn) of its vertices such 
that each vertex V i is a simplicial vertex in the induced subgraph G{V i ,...,Vn} .

A non-endpoint V i is a collider on a path p if p contains ∗ → V i ←∗. A path p from V i to V j is a collider path if p =
〈V i, V j〉 or all the non-endpoints are colliders. p is a minimal path if there are no edges between any two non-consecutive 
vertices. A path p from V i to V j is a minimal collider path if p is a collider path and there is not a proper subset V′ of the 
vertices in p such that there is a collider path from V i to V j comprised of V′ . A triple 〈V i, V j, Vk〉 on a path is unshielded 
if V i and Vk are not adjacent. p is an uncovered path if every consecutive triple on p is unshielded. p is a minimal possible 
directed path if p is minimal and possible directed. p is a minimal circle path if p is minimal and a circle path.

A mixed graph is an ancestral graph if there is no directed or almost directed cycle (since we assume no selection bias, 
there are no undirected edges). An ancestral graph is a maximal ancestral graph (MAG, denoted by M) if it is maximal, i.e., for 
any two non-adjacent vertices, there is a set of vertices that m-separates them [33]. A path p from X to Y in an ancestral 
graph G is an inducing path if every non-endpoint vertex on p is a collider and meanwhile an ancestor of either X or Y . An 
ancestral graph is maximal if and only if there is no inducing path between any two non-adjacent vertices.

In an MAG, a path p = 〈X, · · · , W , V , Y 〉 is a discriminating path for V if (1) X and Y are not adjacent, and (2) every 
vertex between X and V on the path is a collider on p and a parent of Y . Two MAGs are Markov equivalent if they share 
the same m-separations. A class comprised of all Markov equivalent MAGs is a Markov equivalence class (MEC). We use a 
partial ancestral graph (PAG, denoted by P) to denote an MEC, where a tail/arrowhead occurs if the corresponding mark is 
tail/arrowhead for all Markov equivalent MAGs, and a circle occurs otherwise.

For a PMG M that is obtained from a PAG P by orienting some circles to either arrowheads or tails, an MAG M is 
consistent to the PMG M (with respect to P) if (1) the non-circle marks in M are also in M, and (2) M is in the MEC 
represented by P . Note the PAG P is needed in the second condition above. We omit P and just say M consistent to M
for brevity because in the whole paper a PAG P is given throughout. An MAG M is consistent to the BK if M is with the 
orientations represented by the BK.

3. Sound and complete rules

In this section, we present the sound and complete orientation rules to orient a PAG P with local BK, where P can be 
obtained by, for example, applying the FCI algorithm with observational data [13,35]. Denote V(P) = {V 1, V 2, · · · , Vd}. We 
present the definition of local BK in Definition 1.

Definition 1 (local BK). Given a PAG P and BK, a circle in P is accessible if the BK can directly indicate an arrowhead or tail 
here. BK is local if there exists V ⊆ V(P) such that for any vertex V ∈ V, all the circles at V in P are accessible and for any 
V ∈ V(P)\V, no circle at V is accessible.
3
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In this section, we make a convention that the term BK refers to local BK in Definition 1. We assume the absence 
of selection bias2 and the correctness of BK. The correctness indicates that there exists an MAG consistent to P and the 
BK. Without loss of generality, we suppose the local BK is regarding V 1, V 2, · · · , Vk, 1 ≤ k ≤ d. That is, for any vertex 
X ∈ {V 1, V 2, · · · , Vk}, all the marks at X are known according to the local BK; and for any vertex X ∈ {Vk+1, · · · , Vd}, the 
local BK does not directly imply any marks at X . All the proofs for the results in this section are presented in Section 3.2.

3.1. Our results

First, we show the orientation rules to incorporate local BK into a PAG that has been learned with observational data. 
They are proposed with one replacement3 and one addition based on the rules of Zhang [35] for learning a PAG. We do not 
list all of them here but only the replaced and additional ones. See Appendix A for the rules proposed by Zhang [35].

R′
4: If 〈K , · · · , A, B, R〉 is a discriminating path between K and R for B , and B ◦− ∗ R , then orient B ◦− ∗ R as B → R .

R11: If A −◦B , then A → B .

We present Proposition 1 to imply the soundness of R′
4 to orient a PAG P or a PMG obtained from P with local BK 

incorporated. R11 is immediate from no selection bias assumption. In this paper, we make a convention that when we say 
the orientation rules, they refer to R1 − R3, R8 − R10

4 of Zhang [35] and R′
4, R11. A PMG is closed under the orientation 

rules if the PMG cannot be oriented further by the orientation rules.

Proposition 1. Given a PAG P , for any PMG M that is obtained from P with part of local BK incorporated (or M =P), R′
4 is sound 

to orient M.

Next, we will prove the completeness of the proposed orientation rules. It is somewhat complicated. We first give a 
roadmap for the proof idea. There are mainly two parts. The first is that we present a complete algorithm to orient P with 
the local BK regarding V 1, V 2, · · · , Vk . The second part is to prove that the complete algorithm orients the same marks as 
the proposed orientation rules. Combining these two parts, we conclude that the orientation rules are sound and complete 
to orient a PAG with local BK. The construction of the algorithm along with the proof of the algorithm completeness in 
the first step is the most difficult part. In this part, we divide the whole process of orienting a PAG with BK regarding 
V 1, V 2, · · · , Vk into k steps. Beginning from the PAG P (P is also denoted by M0), in the (i + 1)-th (0 ≤ i ≤ k − 1) step 
we obtain a PMG Mi+1 from Mi by incorporating B K (V i+1) and orienting some other circles further, where B K (V i+1)

denotes all the marks at V i+1 indicated by BK. To obtain the updated graph in each step, we propose an algorithm orienting 
a PMG with local BK regarding one variable. Repeat this process of incorporating B K (V 1), B K (V 2), . . . , B K (Vk) sequentially, 
we obtain the PMG with incorporated BK regarding V 1, · · · , Vk . We will prove that the k-step algorithm to orient PAG with 
local BK regarding V 1, · · · , Vk is complete, by an induction step that if the first i-step algorithm is complete to update 
the PAG P with BK regarding V 1, · · · , V i , then the (i + 1)-step algorithm is complete to update P with BK regarding 
V 1, · · · , V i+1. Hence the proof in the first part completes.

We present Algorithm 1 to obtain Mi+1 from Mi by incorporating B K (V i+1). For brevity, we denote V i+1 by X , and 
introduce a set of vertices C(X) = {V ∈ V(P) | V ∗ → X ∈ B K (X)} to denote the vertices whose edges with X will be oriented 
to ones with arrowheads at X according to B K (X). For simplicity, and considering that the variable which the local BK 
is regarding will always be specified in the following, we will use C to represent C(X) hereafter. It is direct that C can 
represent the local BK regarding X . In Mi+1, there is X ←∗V for V ∈ C and X −∗V for V ∈ {V ∈ V(P) | V ∗− ◦ X in Mi}\C
according to B K (X). Since some marks of X are incorporated as local BK regarding X , we can orient some edges further.

In the first step of Algorithm 1, the orientation of the marks at X follows B K (X), and the orientation of the vertices 
apart of X is motivated as the necessary condition for the ancestral property. Speaking roughly, we orient K ←∗T in the 
first step for otherwise no matter how we orient the other circles, there will be a directed or almost directed cycle if 
there is K → T , unless we introduce new unshielded colliders which take new conditional independence relative to P , 
both of which are evidently invalid to obtain an MAG in the MEC represented by P . Since some additional arrowheads are 
introduced in the first step, they can lead to some other circles identification. To characterize them, we define FMi

Vl
= {V ∈

C ∪ {X} | V ∗− ◦ Vl in Mi} for any Vl ∈ PossDe(X, Mi[−C])\{X}, which is denoted by FVl for short. FVl denotes the vertices 
in C ∪ {X} whose edges with Vl are oriented to ones with arrowheads at Vl in the first step. The orientation in the second 
step is motivated as the necessary condition for that there are no new unshielded colliders in the oriented graph relative to 
P . The third step orients some other circles based on the updated structure.

2 In general, MAG can contain undirected edges in the case of selection bias. Since in this paper we assume the absence of such bias, the term MAG only 
refers to directed MAG, which does not contain undirected edges.

3 R4 is necessary for learning a PAG with observational data. We replace R4 with R′
4 when we incorporate local BK after we have learned a PAG.

4 R5 −R7 are not considered as they are not triggered in the absence of selection bias.
4



T.-Z. Wang, T. Qin and Z.-H. Zhou Artificial Intelligence 322 (2023) 103964
Fig. 1. An example to demonstrate the implementation of each step of Algorithm 1. Fig. 1(a) depicts a PMG Mi . Suppose the local BK is in the form of 
V 1 ←∗V 2, V 1 −∗V 5, V 1 −∗V 4. The Fig. 1(b)/ 1(c)/ 1(d) displays the graph obtained after the first/second/third step of Algorithm 1. The edges oriented by each 
step are denoted by red dashed lines. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Algorithm 1 Update a PMG with local BK of X represented by C.
input: A PMG Mi , B K (X) represented by C
1: For any K ∈ PossDe(X, Mi[−C]) and any T ∈ C such that K ◦− ∗ T in Mi , orient K ←∗T (the mark at T remains); for all K ∈ PossDe(X, Mi[−C]) such 

that X ◦− ∗ K , orient X → K
2: Orient the subgraph Mi [PossDe(X, Mi [−C])\{X}] as follows until no feasible updates: for any two vertices Vl and V j such that Vl ◦− ◦ V j , orient it as 

Vl → V j if (i) FVl \FV j �= ∅ or (ii) FVl = FV j as well as there is a vertex Vm ∈ PossDe(X, Mi [−C])\{X} not adjacent to V j such that Vm → Vl ◦− ◦ V j

3: Apply the orientation rules until the graph is closed under the orientation rules.
output: Updated graph Mi+1

Example 1. Consider the example in Fig. 1. Suppose the input PMG Mi in Algorithm 1 is the graph in Fig. 1(a). And there is 
local BK regarding X = V 1 in the form of V 1 ←∗V 2, V 1 −∗V 5, V 1 −∗V 4. Hence C = {V 2}. In this case, PossDe(X, Mi[−C]) =
PossDe(V 1, Mi[−V 2]) = {V 1, V 3, V 4, V 5}. And FV 3 = {V 2}, FV 4 = ∅, FV 5 = {V 1, V 2}. We will first illustrate the implemen-
tation of each step of Algorithm 1, then discuss the reasons behind these orientations. When implementing Algorithm 1, 
in the first step, the edges denoted by red dashed lines in Fig. 1(b) are oriented. V 1 ←◦V 2/V 1 → V 5/V 1 → V 4 is ori-
ented due to V 1 = X, V 2 ∈ C, {V 4, V 5} ⊆ {V ∈ V(P) | V ∗− ◦ X in Mi}\C. V 2◦ → V 5/V 2◦ → V 3 is oriented due to V 2 ∈ C and 
V 3, V 5 ∈ PossDe(X, Mi[−C]). In the second step of Algorithm 1, the edge denoted by red dashed line in Fig. 1(c) is oriented 
due to (1) a circle edge V 3 ◦− ◦ V 5 after the first step, where V 3, V 5 ∈ PossDe(X, Mi[−C]); (2) FV 3 = {V 2} ⊂ {V 1, V 2} =FV 5 . 
In the third step of Algorithm 1, the edges denoted by red dashed lines in Fig. 1(d) are oriented by R1.

We next briefly discuss the reasons behind the orientations in the first two steps of Algorithm 1. The explanations are 
not strictly chronological. It is direct that V 1 ←◦V 2/V 1 → V 5/V 1 → V 4 is oriented in the first step according to the local BK 
and R11. In this case, as there is V 1 ∈ FV 5\FV 3 , if V 3∗ → V 5, they form an additional unshielded collider with FV 5 \FV 3 , 
i.e., V 1 → V 5 ←∗V 3, which is not allowed. Hence there can only be V 5 → V 3, which is oriented in the second step of 
Algorithm 1. The orientation V 2◦ → V 5/V 2◦ → V 3 follows the ancestral property. We take V 2◦ → V 3 for an example. If there 
is V 2 ← V 3, there is V 2◦ → V 1 → V 5 → V 3 → V 2, which violates the ancestral property.

Then, we present the key induction result in Theorem 1 for the graph obtained by Algorithm 1 in each step. Based on 
Theorem 1, we conclude the completeness of the k-step algorithm to orient the PAG with the local BK regarding V 1, . . . , Vk
in Corollary 1.

Theorem 1. Given a positive integer i, for any s ∈ {0, 1, . . . , i}, we iteratively obtain Ms+1 from Ms by incorporating B K (V s+1) with 
Algorithm 1 (M0 =P). Suppose Ms, ∀s ∈ {0, 1, . . . , i}, satisfies the five following properties:

(Closed) Ms is closed under the orientation rules.
(Invariant) The arrowheads and tails in Ms are invariant in all the MAGs consistent to P and BK regarding V 1, . . . , V s.
(Chordal) The circle component in Ms is chordal.
(Balanced) For any three vertices A, B, C in Ms , if A∗ → B ◦− ∗ C , then there is an edge between A and C with an arrowhead at C , 
namely, A∗ → C. Furthermore, if the edge between A and B is A → B, then the edge between A and C is either A → C or A◦ → C
(i.e., it is not A ↔ C).
(Complete) For each circle at vertex A on any edge A ◦− ∗ B in Ms , there exist MAGs M1 and M2 consistent to P and BK regarding 
V 1, . . . , V s with A ←∗B ∈ E(M1) and A → B ∈ E(M2).

Then the PMG Mi+1 also satisfies the five properties.

Corollary 1. The k-step algorithm from M0(= P) to Mk is sound and complete. That is, the non-circle marks in Mk are invariant in 
all the MAGs consistent to P and BK regarding V 1, . . . , Vk. And for each circle in Mk, there exist both an MAG with an arrowhead and 
an MAG with a tail here that are consistent to P and BK regarding V 1, . . . , Vk.

Till now, we have proved the completeness of the k-step algorithm based on Algorithm 1 to orient a PAG with local 
BK. Finally, we present Theorem 2 to show the completeness of the orientation rules, by proving that the orientation rules 
orient the same marks as the complete k-step algorithm.
5
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Fig. 2. Fig. 2(a) depicts a PAG P , with B K (V 1) in the form of V 1 ←∗V 2, V 1 ←∗V 5, V 1 −∗V 4 and B K (V 2) in the form of V 2 ←∗V 1, V 2 −∗V 3, V 2 −∗V 5. 
Fig. 2(b)/Fig. 2(c) depicts the PMG obtained from P /M1 by incorporating B K (V 1)/B K (V 2), where the circle component is denoted by shaded area and 
the edges oriented by the orientation rules are denoted by red dashed lines. Fig. 2(d) depicts the obtained graph from P by incorporating the tiered BK 
partitioning the whole variables into two subsets T1 and T2, denoted by shaded area, and with an order where T1 precedes T2.

Theorem 2. The orientation rules are sound and complete to orient a PAG with the local background knowledge regarding V 1, . . . , Vk.

Example 2. We give an example to illustrate the k-step algorithm based on Algorithm 1 in Fig. 2. Suppose we obtain a PAG 
as Fig. 2(a) with observational data and have the local BK regarding V 1, V 2. We divide the whole process of obtaining a 
PMG from P with the local BK into obtaining M1 from P with B K (V 1) by Algorithm 1 and then obtaining M2 from M1
with B K (V 2) by Algorithm 1. M1 and M2 are shown in Fig. 2(b) and 2(c), respectively. It is not hard to verify that all of 
P , M1, M2 satisfy the closed, chordal, and balanced properties defined in Theorem 1. Note if we do not consider R′

4, the 
edge colored red in Fig. 2(b) cannot be oriented.

Discussion Finally, we present a detailed discussion about the difference between local and tiered BK proposed by Andrews 
et al. [48]. BK is tiered if the variables can be partitioned into two or more mutually exclusive and exhaustive subsets among 
which there is a known causal order. Local BK and tiered BK focus on totally different aspects of graphs. Roughly speaking, 
local BK introduces the fully structural information of some specific variables, while tiered BK introduces the information 
about the rough causal order of the whole variables. Fig. 2(d) shows an example of tiered BK incorporated to the PAG in 
Fig. 2(a), which partitions the whole variables V 1, · · · , V 5 into two subsets T1 = {V 1, V 2, V 5} and T2 = {V 3, V 4}. The tiered 
BK implies that for any two vertices A ∈ T1 and B ∈ T2, there is A → B if A is adjacent to B . Andrews et al. [48] proved that 
FCI algorithm is complete to incorporate tiered BK into a PAG. Thus the edge V 3 → V 4 can be identified additionally and 
the obtained graph is the most informative. In this example, the BK is not local since it just implies the transformation of a 
part of circles at V 1. Hence tiered BK is not necessarily local. The converse is not true as well. In a PAG shown in Fig. 2(a), 
B K (V 1) is local but not tiered.

3.2. Proofs for Section 3.1

3.2.1. Proof of Proposition 1

Lemma 1. If there exists a minimal collider path in an MAG M consistent to a PAG P , then it is also a collider path in P .

Proof. Suppose a minimal collider path p in M, we consider its corresponding path in P . If there exists a circle or tail at 
the non-endpoint vertex on this path, according to the completeness of FCI [35], there exists an MAG Markov equivalent 
to M that has a tail there, which contradicts Theorem 2.1 of Zhao et al. [49] that Markov equivalent MAGs have the same 
minimal collider paths. Hence the corresponding path of p in P is also a collider path. �
Proof of Proposition 1. Suppose there is a discriminating path 〈K , . . . , A, B, R〉 between K and R for B , and B ◦− ∗ R in a PMG 
M such that there exists an MAG M consistent to M. According to the definition of discriminating path and the soundness 
of R2, there is B◦ → R . Suppose the violation of R′

4, that is, in M there is B ↔ R . Since there is A → R , the edge between 
A and B can only be A ↔ B due to the ancestral property. Hence, there is a collider path p : K∗ → ·· · ↔ A ↔ B ↔ R . If this 
collider path is minimal, then according to Lemma 1 the collider path is identifiable in P , thus there is A ↔ B ←∗R in M, 
contradiction. If p is not a minimal collider path from K to R , there is a subpath p1 that is a minimal collider path from K
to R . Note (1) for any non-endpoint V in the subpath from K to B of p, there is V → R; (2) K is not adjacent to R . Hence 
the only vertex that can be adjacent to R in p1 is B . Hence the minimal path is as 〈K , . . . , B, R〉. According to Lemma 1, 
B ←∗R is identifiable in P , thus B ←∗R in M, contradiction. We conclude the impossibility of the violation of R′

4. �
3.2.2. Proof of Theorem 1

Since the proof of Theorem 1 is complicated, we just show a proof sketch here. A detailed version is given in Appendix B.

Proof sketch of Theorem 1. For brevity, we denote V i+1 by X . (A) The closed property follows the third step of Algo-
rithm 1.(B) The invariant property holds because all the orientations in Algorithm 1 either follow B K (X) or are motivated 
6
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as the necessary condition for the ancestral property and the fact that there cannot be new unshielded colliders introduced 
relative to Mi . (C) The chordal property is proved based on the fact presented by Lemma 13 that only the first two steps 
of Algorithm 1 possibly introduce new arrowheads, while the third step will only transform the edges as A◦ → B to A → B . 
With this fact, it suffices to prove that the circle component in the graph obtained after the first two steps is chordal. 
Denote the graph after the first two steps by M̄i+1. We can prove that the circle components in M̄i+1[PossDe(X, Mi[−C])]
and in M̄i+1[−PossDe(X, Mi[−C])] are chordal, respectively. Since there are no circle edges connecting PossDe(X, Mi[−C])
and V\PossDe(X, Mi[−C]) (otherwise, it will have been oriented in the first step of Algorithm 1), we conclude the desired 
result. (D) The balanced property of Mi+1 is proved based on three facts that (1) in Algorithm 1, if we transform a circle 
to arrowhead at V , then V ∈ PossDe(X, Mi[−C]); (2) if there is A ∈ PossDe(X, Mi[−C]) and A ◦− ∗ B , B /∈ C, in Mi+1, then 
B ∈ PossDe(X, Mi[−C]); (3) Mi satisfies the balanced property. We can prove that it is impossible that there is a sub-
structure V i∗ → V j ◦− ∗ Vk where V i is not adjacent to Vk or there is V i ∗− ◦ Vk in Mi+1 by discussing whether V i, V j, Vk
belongs to PossDe(X, Mi[−C]). (E) The completeness property is proved by showing two results: (1) for all the edges in the 
form of A ◦− ◦ B and C◦ → D in Mi+1, C◦ → D can be transformed to C → D and A ◦− ◦ B can be oriented as both A → B and 
A ← B in the MAGs consistent to P and local BK regarding V 1, · · · , V i+1; (2) in Mi+1, each edge C◦ → D can be oriented 
as C ↔ D in an MAG consistent to P and local BK regarding V 1, · · · , V i+1. In this part, the most difficult part is to prove 
the first result, with which the second result can be proved directly following the proof process of Thm. 3 of Zhang [35]. In 
the proof for the first result, we show that any graph obtained from Mi+1 by transforming the edges as C◦ → D to C → D
and the circle component into a DAG without new unshielded colliders is an MAG consistent to P and local BK regarding 
V 1, . . . , V i+1. If not, we can always find a graph obtained from Mi by transforming the edges as C◦ → D to C → D and the 
circle component into a DAG without new unshielded colliders that is not an MAG consistent to P and local BK regarding 
V 1, . . . , V i . By induction, a graph obtained from P by transforming the edges as C◦ → D to C → D and the circle component 
into a DAG without new unshielded colliders is not an MAG consistent to P , contradiction with Thm. 2 of Zhang [35]. �
3.2.3. Proof of Corollary 1

Proof. Previous studies [34,35] showed that the last four properties in Theorem 1 are fulfilled for PAG, the case in R′
4 will 

never happen in P because such circles have been oriented by R4 in the process of learning P , and the case in R11 is 
never triggered as no orientation rules of Zhang [35] can lead to such a structure. Hence P satisfies the five properties. 
With the induction step implied by Theorem 1, we directly conclude that Mk satisfies the five properties, thereby satisfying 
the invariant and complete property. �
3.2.4. Proof of Theorem 2

Proof. The soundness of R′
4 is shown by Proposition 1. The soundness of other rules immediately follows Thm. 4.1 of Ali 

et al. [34] and Thm. 1 of Zhang [35]. We do not show the details. The main part is to prove the completeness.
According to Corollary 1, it suffices to prove that in each step of Algorithm 1, the orientations in Algorithm 1 either 

follow B K (X) directly, or can be achieved by the orientation rules. The second step of Algorithm 1 can be achieved by R1, 
because no matter FVl \FV j �= ∅ or Vm → Vl ◦− ◦ V j , there is F ∈ FVl \FV j or F = Vm such that F∗ → Vl ◦− ◦ V j where F
is not adjacent to V j . The orientation in the third step naturally follows the orientation rules. In the first step, X ←∗V for 
V ∈ C is represented by B K (X), and X → V for V ∈ {V ∈ V(P) | X ◦− ∗ V }\C is obtained from X −∗V represented by B K (X)

and R11. The only remaining part is to prove for K ∈ PossDe(X, Mi[−C])\{X} and T ∈ C, if there is K ◦− ∗ T in Mi , K ←∗T
can be oriented by the orientation rules when we incorporate B K (X).

Due to K ∈ PossDe(X, Mi[−C])\{X}, there is a possible directed path from X to K that does not go through C. According 
to Lemma 2, there is a minimal possible directed path p = 〈X(= F0), F1, . . . , K (= Ft)〉, t ≥ 1 where each vertex does not 
belong to C in Mi . According to R1 and R11, there is always X → F1 → ·· · → Ft by the orientation rules after incorporating 
B K (X). If t = 1, there is T ∗ → X → K , thus K ←∗T can be oriented by R2. Next, we consider the case when t ≥ 2.

We first prove that for any Fm ∈ F1, . . . , Ft , t ≥ 2, Fm is adjacent to T , and there is not Fm → T in Mi . Suppose Fm is 
not adjacent to T , there must be a sub-structure of Mi induced by Fm−s, Fm−s+1, . . . , Fm+l, T , 1 ≤ s ≤ m, 1 ≤ l ≤ t − m, such 
that T is only adjacent to Fm−s and Fm+l in this sub-structure. There are at least four vertices in this sub-structure. Hence 
there must be an unshielded collider (denoted by UC for short) in this sub-structure in P , otherwise no matter how we 
orient the circle there is either a new UC relative to P or a directed or almost directed cycle. Since p is possibly directed, 
the UC is at either (i) Fm+l or (ii) T (i.e., ∗ → Fm+l( or T ) ←∗). (i) If there is a UC at Fm+l , T ∗ → Fm+l ←∗Fm+l−1 is identified 
in P . Thus Fm+l → Fm+l+1 · · · → Ft is identified in P . Due to the completeness of FCI algorithm to learn P , there is K ←∗T
in P , because there is not an MAG with K → T which contains an (almost) directed cycle Fm+l → ·· · → Ft → T ∗ → Fm+l . 
Hence K ←∗T is in Mi , contradicting with K ◦− ∗ T in Mi . (ii) If there is a UC at T . Fm−s∗ → T ←∗Fm+l is identified in P . 
Since p is possibly directed, Fm+l−1 is not adjacent to T , and there is not a UC at Fm+l in the sub-structure, there cannot be 
Fm+l ↔ T in P . Hence the path 〈Fm−s, Fm−s+1, . . . , Fm+l, T 〉 in P is a possible directed path, Fm−s → T is identified in P
(otherwise R9 applies). In this case there is Fm−s ∈ PossDe(X, Mi[−C]) ∩ Pa(C, Mi), which contradicts with Lemma 10 in 
Appendix B. Hence there is always a contradiction if there is some Fm not adjacent to T . The fact that there is not Fm → T
also directly follows Lemma 10.
7
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Finally, since F1 is adjacent to T , and T ∗ → X → F1 is oriented according to B K (X), according to R2, there is always 
T ∗ → F1 after incorporating the local BK with the orientation rules. Consider T ∗ → F1 → F2, there is also T ∗ → F2 oriented. 
We can prove by induction that T ∗ → Ft(= K ) can be oriented by orientation rules. �
4. Application 1: MAG listing

In this section, based on the theoretical result for the complete causal identification given local BK, we propose a method 
to list all the MAGs consistent to a given PAG P . Suppose V(P) = {V 1, V 2, · · · , Vd}. All the proofs for the results in this 
section are presented in Section 4.2.

4.1. Proposed method

The idea of our method is to transform the circles of each vertex in P recursively. In each step, we determine all the 
valid local transformations of one vertex with circles, where a local transformation denotes a kind of transformation of all the 
circles at this vertex, and a local transformation is said to be valid if there exists an MAG consistent to P that has the 
non-circle marks in the graph obtained by the local transformation. For any valid local transformation, it is incorporated as 
a local BK to the partial graph with the complete orientation rules. We recursively execute local transformations of each 
vertex with circles until all the circles are transformed (to non-circles).

The most crucial part in our method is to determine all the valid local transformation of a vertex. This problem is 
challenging, because it is unknown under what conditions of the local transformations there exist MAGs consistent to P
that can be obtained by the local transformations, and it is even unclear whether there is such a condition. In fact, it is 
strongly related to the complete causal identification result in Section 3, especially Algorithm 1 which orients a PMG with 
local BK. Both local BK and local transformation directly implies and only directly implies all the marks of one vertex. The 
difference is, when we incorporate local BK in Section 3, Algorithm 1 can always be executed due to the soundness of 
Algorithm 1 and the correct BK assumption which ensures that there exist MAGs consistent to P and BK. Here, however, 
since it is unknown whether a local transformation is valid, it is possible that we generate (almost) directed cycles or new 
unshielded colliders when we incorporate the local transformation by Algorithm 1, which implies the invalidity of the local 
transformation. Hence, for a given local transformation, if it is valid, then there should not be (almost) directed cycles or 
new unshielded colliders generated by Algorithm 1. On the other hand, if for a local transformation we do not generate 
(almost) directed cycles or new unshielded colliders by Algorithm 1, then the graph obtained by Algorithm 1 fulfills the five 
properties in Theorem 1 (with some necessary modifications), thus an MAG with the local transformation consistent to P
can be obtained by the similar procedure in Lemma 16.1 in Appendix B. Based on this idea, we build the necessary and 
sufficient conditions for the existence of MAGs with each local transformation in Theorem 3, which can be determined in 
O(d3). Before showing it, we introduce a graphical characterization, bridged, in Definition 2 for the feasibility of Step 2 of 
Algorithm 1 for the local transformation represented by C. An illustration for introducing bridged is detailed in Example 3.

Definition 2 (Bridged relative to V′ in H). Let H be a partial mixed graph. Denote G a subgraph of H induced by a set of 
vertices V. Given a set of vertices V′ in H that is disjoint of V, two vertices A and B in the circle component of G are bridged 
relative to V′ if in each minimal circle path A(= V 0) ◦− ◦ V 1 ◦− ◦ · · · ◦− ◦ Vn ◦− ◦ B(= Vn+1) from A to B in G , there exists one 
vertex V s, 0 ≤ s ≤ n + 1, such that FV i ⊆FV i+1 , 0 ≤ i ≤ s − 1 and FV i+1 ⊆FV i , s ≤ i ≤ n, where Fi = {V ∈ V′ | V ∗− ◦ V i in H}. 
Evidently, both case A = B and case that A and B are not connected in the circle component are the trivial cases when A
and B in G are bridged relative to V′ . Further, G is bridged relative to V′ in H if any two vertices in the circle component of 
G are bridged relative to V′ .

Remark 1. FV i ⊆ FV i+1 in Definition 2 can be seen as that vertex V i+1 is at a higher or the same altitude than V i . Hence 
“bridged” describes that the path is like a bridge in reality, which goes up then down. Note that it is also valid if the bridge 
goes towards only one direction.

Example 3. When we try to orient a PMG with a local transformation by Algorithm 1, bridged is introduced as a graphical 
characterization to describe that no new unshielded colliders will be introduced in the second step when some necessary 
arrowheads are introduced in the first step. See Fig. 3 for examples. Fig. 3(a) depicts a PAG P . If the local transformation 
of X is represented by C = {V 1}, V 1◦ → V 2 is oriented in the first step of Algorithm 1, for otherwise there is a (almost) 
directed cycle V 1◦ → X → V 2 → V 1. The arrowhead at V 2 on V 1◦ → V 2 is introduced in the first step. The second step 
of Algorithm 1 will orient V 2 → V 3 → V 4 as Fig. 3(b), which does not introduce new unshielded colliders. According 
to Definition 2, P[V 2, V 3, V 4] is bridged relative to {X, V 1}, as for any circle path, such as V 2 ◦− ◦ V 3 ◦− ◦ V 4, there is 
FV 2 = {X, V 1}, FV 3 = FV 4 = {X}, which follows that FV 2 ⊃ FV 3 = FV 4 and thus the circle path is bridged. If we consider 
the local transformation represented by C = {V 1, V 4}, V 1◦ → V 2 and V 3 ←◦V 4 are introduced in the first step. There is 
always a new unshielded collider at V 2 or V 3 no matter how we transform V 2 ◦− ◦ V 3 as Fig. 3(c). In this case, P[V 2, V 3]
is not bridged relative to {X, V 1, V 4}, since V 2 and V 3 are not bridged due to the minimal circle path V 2 ◦− ◦ V 3, where 
FV 2 = {X, V 1}, FV 3 = {X, V 4}.
8
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Fig. 3. (a)-(c): graphs considered in Example 3. (d): a graph where the first two conditions of Theorem 3 hold but the third one does not.

Algorithm 2 MagList.
input: A PAG P

1: S = ∅ // Record all the MAGs consistent to P
2: OrientGraph(P, S)
3: function OrientGraph(M, S)
4: if there are no circles in M then
5: S ← S ∪ {M}
6: else
7: Select a variable X where there is a circle in M
8: R = {V ∈ V(M) | X ◦− ∗ V in M}
9: for each set C ⊆ R do

10: if the three condition in Theorem 3 are fulfilled then
11: Update M with the local transformation represented by C and apply orientation rules
12: OrientGraph(M, S)
13: end if
14: end for
15: end if
16: end function
output: S

Theorem 3. Denote M the obtained graph after some valid local transformations5 from a PAG P with the orientation rules, and X a 
variable with circles in M. Given a set C ⊆ {V | X ◦− ∗ V in M}, there exists an MAG M consistent to M with X ←∗V for ∀V ∈ C and 
X −∗V for ∀V ∈ {V | X ◦− ∗ V in M}\C if and only if

(1) PossDe(X, M[−C]) ∩ Pa(C, M) = ∅;
(2) the subgraph M[C] of M induced by C is a complete graph;
(3) M[PossDe(X, M[−C])\{X}] is bridged relative to C ∪ {X} in M.

Remark 2. The third condition in Theorem 3 does not necessarily hold even if the first two conditions are fulfilled. See a 
PMG M shown in Fig. 3(d) for an example. When the local transformation is represented by C = {V 2, V 5}, the first two 
conditions are fulfilled. However, in this case PossDe(X, M[−C])\{X} = {V 3, V 4}, and M[V 3, V 4] is not bridged relative to 
{V 2, V 5, X} in M since V 3 and V 4 are not bridged relative to {V 2, V 5, X} in M.

Remark 3. The first two conditions of Theorem 3 can be determined in O(d3). In implementation, the determination of the 
third condition of Theorem 3 is equivalent to the determination of whether new unshielded colliders are introduced or an 
edge J ◦− ◦ K is oriented as both J → K and J ← K in the second step of Algorithm 1. The equivalence is detailed in the 
proof of Theorem 3. This process can also be finished in O(d3).

With Theorem 3, for a given local transformation of X represented by C, we can determine whether an MAG consistent to 
P can be obtained in the follow up transformations after this transformation. By enumerating all the local transformations 
of X , we can determine all the valid ones. Based on the result, the recursive algorithm to list all MAGs consistent to P by 
transforming the circles of each vertex is shown in Algorithm 2. We present Corollary 2 to imply the validity of the method.

Corollary 2. Algorithm 2 is valid to list all the MAGs consistent to P .

In the current, it is hard to give a theoretical analysis of the complexity. It is still an open problem how many MAGs are 
consistent to P , even for the worst case when the PAG is a complete graph. To the best of our knowledge, the related studies 
are limited in the setting absence of latent variables [36,50–52,46,53,54]. When there are latent variables, the presence of 
bi-directed edges makes it difficult to topologically order the vertices as DAGs, thus the traditional analysis methods fail. 
We leave it for future works. Instead, we conduct an intuitive analysis, followed by empirical validation in Section 4.3.

The main advantage of our method is that, we execute a local transformation if and only if an MAG consistent to P
can be obtained after some further circles transformation, which saves a large amount of computation on the invalid MAGs

5 The local transformations could be null, in which case M =P .
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Fig. 4. A realization process of Algorithm 2. The graphs in the second/third/fourth layer are obtained from the previous layer by transforming the circles of 
A/D/C .

Fig. 5. The proof procedure of Lemma 16.1.

which are not MAGs or are not consistent to P . The space of invalid MAGs grows super-exponentially with respect to the 
vertices number d, the enumeration of which costs the main computing time. In our method, with an additional O(d3) cost 
for the determination of Theorem 3, we circumvent the computation on invalid MAGs. Roughly speaking, the completeness 
of the orientation rules and invalid-MAG-free search ensure that the search in our method is necessary. In addition, our 
method separates the MAG space into disjoint sets by transforming local circles into distinct marks. Hence, our method can 
be executed in parallel; and for each MAG consistent to P , our method only obtain it for only once.

Example 4. A search tree for Algorithm 2 is shown in Fig. 4. The top root node denotes the given PAG P . Each node in the 
search tree is expanded from its parent in the previous layer by additionally transforming the circles of a selected variable 
and applying orientation rules. The graph shaded with yellow is a leaf node that depicts a valid MAG. For example, the first 
four graphs in the third layer are obtained from a common parent node by transforming the circles of variable D . We omit 
some branches of the search tree (those unshaded but unexpanded) for brevity.

4.2. Proofs for Section 4.1

4.2.1. Proof of Theorem 3

Proof. We first prove the “if” statement. We prove the result by presenting a procedure that always constructs an MAG with 
the local transformation represented by C if the given conditions are satisfied. The generating process totally follows that 
in the proof of Lemma 16.1 in Appendix B. See Fig. 5 for the proof procedure of Lemma 16.1. The only difference is that in 
the proof of Lemma 16.1, there is a basic assumption that the BK is correct, i.e., there exists an MAG consistent to P and 
BK, which is used in the proof of Lemma 9, Lemma 10, Lemma 11, and Lemma 12. However, here we do not have such an 
assumption, with the three conditions in Theorem 3 instead. Hence, it suffices to show that Lemma 9, Lemma 10, Lemma 11, 
and Lemma 12 also hold given the three conditions. Lemma 9 and Lemma 10 directly follow the second and the first 
conditions in Theorem 3, respectively. Next we prove that Lemma 11 and Lemma 12 hold given the third condition (bridged) 
without the assumption that the local BK is correct. Note that the PMG M obtained after some valid local transformations 
from P with the proposed orientation rules fulfill the five properties according to Theorem 1, because the valid local 
transformation ensures that there exists an MAG with the local transformations consistent to P , which is equivalent to local 
BK assumption in implications. Hence Lemma 3, 7 and 8 also hold for M.
10
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Lemma 11: there is not an edge oriented as both J ← K and J → K in the second step of Algorithm 1 For simplicity, denote 
M[PossDe(X, M[−C])\{X}] by M1. According to Definition 2, there is F J ⊆FK or FK ⊆F J . We only present the proof for 
the case F J = FK . The proof for the case F J �= FK is similar by deriving a contradiction through finding a minimal circle 
path such that the two endpoints are not bridged, thus we leave them for readers.

By Lemma 8, if we orient J → K in the second step, there is a minimal circle path V 0 ◦− ◦ V 1 ◦− ◦· · · Vm−1(= J ) ◦− ◦ Vm(= K )

where FV 0 ⊃ FV 1 = · · · = FVm . If we also orient J ← K in the second step, there is another minimal circle path Vm−1(=
J ) ◦− ◦ Vm(= K ) ◦− ◦ · · · ◦− ◦ Vn, n > m in M1 where FVm−1 = FVm = · · · = FVn−1 ⊂ Fn . Note Vm+1 is adjacent to Vm but 
not adjacent to Vm−1, while Vm−2 is adjacent to Vm−1 but not adjacent to Vm , hence Vm−2, Vm−1, Vm , Vm+1 are distinct 
vertices. According to Lemma 3, there cannot be non-circle edge between the variables in the circle path. Also note no circle 
edges in M1 are oriented in the first step. Hence the circle component in M1 after the first step is still chordal. Hence 
V 0 ◦− ◦ V 1 ◦− ◦ · · · ◦− ◦ Vn is also a minimal circle path, otherwise there is a circle cycle whose length is larger than 3 without a 
chord because this cycle must contain Vm−2, Vm−1, Vm, Vm+1 where Vm−2 is not adjacent to Vm and Vm−1 is not adjacent 
to Vm+1. Since V 0, · · · , Vn ∈ PossDe(X, M[−C])\{X}, V 0 and Vn are not bridged relative to C, contradicting with the third 
condition of Theorem 3.

Lemma 12: In the second step of Algorithm 1 when the local transformation of X represented by C is introduced, there is not a new un-
shielded collider generated Suppose there is a new unshielded collider A → B ← C generated in the second step. According 
to Lemma 8 there is a minimal path F1 → ·· · , → Fm(= A) → B, m ≥ 2 and a minimal path V 1 → ·· · Vn(= C) → B, n ≥ 2
such that FF1 ⊃ FF2 = · · · = FB and FV 1 ⊇ FV 2 = · · · = FB . A and C are evidently different vertices that are not ad-
jacent. In this case there is a circle path p : F1 ◦− ◦ · · · ◦− ◦ Fm(= A) ◦− ◦ B ◦− ◦ Vn(= C) ◦− ◦ · · · ◦− ◦ V 1 in M such that 
FF1 ⊃ FF2 = · · · = FB = · · · = FV 2 ⊂ FV 1 . According to Lemma 3, there are no non-circle edges between the variables in p. 
In this case, there is always a minimal circle path from F1 to V 1 such that F1 and V 1 are not bridged relative to C ∪ {X} in 
M, contradiction.

Then we prove the “only if” statement We prove it by reduction to absurdity. Suppose an MAG M consistent to M has the 
local structure of X represented by C.

If M[C] is not complete, there are new unshielded colliders in M relative to M. It is evident that M is not consistent 
to M, contradiction.

If PossDe(X, M[−C]) ∩ Pa(C, M) �= ∅, suppose V → T where V ∈ PossDe(X, M[−C]) and T ∈ C. By Lemma 4, V ∈
De(X, M), thus T ∈ De(X, M). According to the definition of C, there is X ←∗T , a directed or almost directed cycle forms, 
contradiction.

If M[PossDe(X, M[−C])\{X}] is not bridged relative to C ∪ {X} in M, we will prove the result by showing that either 
Lemma 11 or 12 is violated for the graph updated by Algorithm 1 with the local transformation represented by C. Note the 
orientations in Algorithm 1 are sound according to Lemma 7. If Lemma 11 is violated, it is only possible that the set of the 
MAGs with the local transformation consistent to M is empty, otherwise the sound orientations suggest totally different 
directions; and if Lemma 12 is violated, there are always new unshielded colliders generated relative to M when the local 
transformation represented by C is introduced, which also implies that the set of the MAGs with the local transformation 
consistent to M is empty.

Suppose two vertices J , K in M[PossDe(X, M[−C])\{X}] are not bridged relative to C due to the minimal circle path 
J (= V 0) ◦− ◦ V 1 · · · Vn ◦− ◦ K (= Vn+1) in M[PossDe(X, M[−C])\{X}]. There are two possible cases (they possibly happen 
simultaneously). One is that there exists 0 ≤ s ≤ n such that FV s � FV s+1 and FV s+1 � FV s . The other is that there exists 
1 ≤ s ≤ n such that FV s ⊂FV s−1 and FV s ⊂FV s+1 .

For the first case, suppose there are two vertices T1, T2 ∈ C such that T1 ∈ FV s \FV s+1 and T2 ∈ FV s+1\FV s . According 
to Algorithm 1 to update M with the local transformation represented by C, when T1, T2 ∈ C, there is V s → V s+1 due to 
T1 ∈FV s \FV s+1 , and there is V s ← V s+1 due to T2 ∈FV s+1\FV s . Lemma 11 is violated.

For the second case, suppose a vertex T1 ∈ FV s−1\FV s . By Algorithm 1, there is V s−1 → V s oriented. And suppose a 
vertex T2 ∈FV s+1\FV s , there is V s+1 → V s oriented. Hence there is a new unshielded collider V s−1 → V s ← V s+1 generated 
by Algorithm 1 relative to M, thus Lemma 12 is violated.

Combining the results above, we conclude that there does not exist an MAG consistent to M with the local structure of 
X represented by C when the three conditions are violated. �
4.2.2. Proof of Corollary 2

Proof. Denote the set of MAGs returned by Algorithm 2 and the set of MAGs consistent to P by Ŝ and S , respectively. 
Ŝ ⊆ S directly follows from Theorem 3, which implies that each MAG M ∈ Ŝ is consistent to P . It suffices to prove S ⊆ Ŝ . 
Suppose an MAG M ∈ S . Without loss of generality, suppose the set of vertices with circles in P is {V 1, · · · , Vk}, and 
first vertex that is locally transformed in Algorithm 2 is V 1. For brevity, we say a local transformation of a vertex V is 
consistent to M if the local marks implied by the transformation are identical to those in M. Note Algorithm 2 considers 
all possible local transformations. For the set C1 which represents the local transformation of V 1 consistent to M, due to 
the existence of MAGs (M) consistent to P , the conditions on Line 10 of Algorithm 2 are fulfilled according to Theorem 3. 
Hence Algorithm 2 will transform the other circles based on the local transformation of V 1 represented by C1 on Line 12. 
11
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Algorithm 3 BruteForce.
input: A PAG P

1: S = ∅ // Record all the MAGs consistent to P
2: Obtain an MAG M from P by transforming the circle component into a DAG and the edges ◦ → into →
3: Cset = {(i, j) | there is V i ∗− ◦ V j in P} // Record the indexes of all the circles in P
4: for each set C ⊆ Cset do
5: Obtain a graph G by transforming the circles in C to arrowheads and others to tails
6: if there is an edge with two tails in G then
7: continue // It violates the absence of selection bias
8: end if
9: if there is a directed or almost directed cycle in G then

10: continue // It violates the ancestral property
11: end if
12: if there is an inducing path in G then
13: continue // It violates the maximal property
14: end if
15: if G is Markov equivalent to M by Thm. 3.7 of Ali et al. [55] then
16: S ← S ∪ {G} // It is consistent to P
17: end if
18: end for
output: S

Fig. 6. Results of running time and number of listed MAGs over 100 simulations for each vertice number (including 3 latent ones)/graph density. The 
vertical line represents the 95% confidence interval generated by bootstrap sampling. It is determined by the 2.5th and 97.5th percentiles of 1000 estimates 
{θ̂1, ̂θ2, . . . , ̂θ1000}, where θ̂i is an empirical mean of a new random sample of equal size with replacement from the original sample.

Further, suppose the second vertex locally transformed in Algorithm 2 is V 2. Similar to the proof above, we can prove that 
for the set C2 which represents the local transformation of V 2 consistent to M, the conditions on Line 10 of Algorithm 2
are fulfilled and Line 12 is executed for C2. By induction, we can prove that for the set Ci, 1 ≤ i ≤ k which represents the 
local transformations of V i that has the identical local marks of V i with M, Line 12 is executed. Thus, after the local 
transformation of V 1, · · · , Vk represented by C1, · · · , Ck , we can obtain M (note the algorithm possibly stops in a round 
s < k, since the orientation rules may help reveal all of the circles at V s+1, · · · , Vk with the local BK regarding V 1, · · · , V s . 
The obtained graph is in this case is also M due to the soundness of the orientation rules). We conclude S ⊆ Ŝ . �
4.3. Experiments

In this part, we evaluate the effectiveness and efficiency of the proposed methods to list all the MAGs consistent to a 
PAG P . We call our method MagList. MagList is compared to the baseline brute force enumeration method, which is called
BruteForce and shown in Algorithm 3. According to Thm. 2 of Zhang [35], an MAG consistent to P is obtained on Line 2 
of Algorithm 3. Next, all the possible transformations of the circles in P are considered. For any graph G obtained after a 
transformation, we test whether it is an MAG from Line 6 to 14. If it is, we further evaluate whether it is consistent to P by 
testing whether it is Markov equivalent to M on Line 15. There are many solid methods in the literature for testing Markov 
equivalence [49,55,56,42].
12
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We generate 100 Erdös-Rényi random DAGs for each setting, where the number of nodes d ∈ {6, 8, 10, 12, 14, 16} and 
density6 ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The weight of each edge is drawn from U [1, 2]. We then take three of variables as latent 
variables and others as observed variables. Based on each DAG, we obtain the truth PAG. Then, we adopt the two methods 
(MagList, BruteForce) to list all the MAGs consistent to the PAG. Due to the possibility that for some PAGs it is hard to 
list all the MAGs in limited time, we set the maximum running time for each PAG by 1800 seconds. If the running time 
exceeds the threshold, the method will immediately output the MAGs that have been found. The number of listed MAGs is 
shown as Fig. 6. When the number of vertices is not large (d < 10), both of the methods can finish within 1800 seconds. 
In this case MagList and BruteForce output the same set of MAGs. It verifies the effectiveness of our proposed method. 
Fig. 6 shows that MagList has a significant advantage on efficiency compared to BruteForce. For example, when d = 10 and 
ρ = 0.5, the number of MAGs listed by MagList is more than five times that by BruteForce. And the difference is larger as 
d and ρ grows. Note the number of MAGs listed by BruteForce does not necessarily increase as d or ρ grows. The reason 
is, as d or ρ grows, the space of graphs becomes larger and there are more invalid graphs which are not MAGs consistent 
to P . Since the number of searched graphs in 1800 seconds is limited, when there are more invalid MAGs which are not 
MAGs or are not consistent to P , it is possible that fewer MAGs consistent to P are listed in the limited time. This problem 
will not occur for MagList, because the search in MagList is invalid-MAG-free. That also validates the efficiency of MagList.

5. Application 2: active causal discovery framework

With the establishment of the sound and complete orientation rules for causal identification with local BK, we propose 
an active causal discovery framework in the presence of latent variables in this section, with the target of learning the MAG 
with as fewer interventions as possible. Suppose we have the observational data of {V 1, V 2, · · · , Vd}.

5.1. The learning framework

The framework is comprised of three stages. In Stage 1, we learn a PAG with observational data. In Stage 2, we select a 
singleton variable X ∈ {V 1, . . . , Vd} to intervene and collect a few interventional data. In Stage 3, we learn causal relations 
with the interventional data. For each edge X ◦− ∗ V i , the circle at X can be learned by a two-sample test on whether the 
interventional distribution of V i equals to the observational one. There is X ←∗V i learned if they are equal, and X −∗V i
otherwise. Hence, the knowledge taken by the interventional data is local, and we can further update the graph with the 
orientation rules. We repeat the second and third stages until we identify an MAG. The only remaining problem is how to 
select the intervention variable in Stage 2.

Considering that the whole process is sequential, we only focus on the intervention variable selection in one round. 
Without loss of generality, suppose we have obtained a PMG Mi by i interventions on V 1, V 2, . . . , V i , and will select a 
variable from {V i+1, . . . , Vd} to intervene. We adapt the maximum entropy criterion used in DAG discovery [23]. For Mi , 
we select the variable X that maximizes

H X = −
M∑

j=1

l j

L
log

l j

L
, (1)

where j is an index for a local structure of X (a local structure of X denotes a combination of marks at X), M is the 
number of different local structures, l j is the number of MAGs consistent to Mi which has the j-th local structure of X , 
and L is the total number of MAGs consistent to Mi . Intuitively, maximum entropy criterion is devoted to selecting the 
intervention variable X such that there is a similar number of MAGs with each local structure of X and as more as possible 
local structures of X . A justification for intervening on such a variable is that we hope to have a small space of MAGs after 
the intervention no matter what the true local structure of X is.

When the number of vertices is not large, we can execute Algorithm 2 to list all the MAGs consistent to Mi ,7 and 
then count the number of MAGs with each local structure. When the number is large, however, it is hard to list all the 
MAGs. Even in causal sufficiency setting, implementing such operation (generally called counting maximally oriented partial 
DAGs) is #P-complete [53]. Considering DAG is a special case for MAG, the counting of MAGs is harder. Hence, we adopt a 
sampling method based on Metropolis-Hastings (MH) algorithm [57], to uniformly sample from the space of MAGs. Here, 
we introduce an important result of Zhang and Spirtes [58], Tian [59] for MAGs transformation in Proposition 2, which 
supports the feasibility of the MH algorithm in sampling MAGs.

Proposition 2 (Zhang and Spirtes [58], Tian [59]). Let M be an arbitrary MAG, and A → B an arbitrary directed edge in M. Let M′
be the graph identical to M except that the edge between A and B is A ↔ B. M′ is an MAG Markov equivalent to M if and only if

6 Density denotes the probability of including an edge between any two nodes.
7 Despite Algorithm 2 proposed for listing all MAGs consistent to P , it can be directly applied in listing all the MAGs consistent to M which is obtained 

from P by incorporating some local BK.
13
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Algorithm 4 Intervention variable selection based on maximum entropy criterion with MH algorithm.
input: A PMG Mi oriented based on P and BK regarding V 1, . . . , V i

1: Obtain an MAG M0 based on Mi by transforming ◦ → to → and the circle component into a DAG without new unshielded colliders
2: for t = 1, 2, . . . , L do
3: Sample an MAG M′ from S(Mt−1) ρ = min(1, |S(Mt−1)|

|S(M′)| )

4: Sample u from uniform distribution U [0, 1]
5: if u ≤ ρ then
6: Mt = M′
7: else
8: Mt = Mt−1

9: end if
10: end for
11: s ← 0, X ← ∅
12: for V j = V i+1, . . . , Vd do
13: Denote V(V j) = {V ∈ V(Mi) | V j ◦− ∗ V in Mi}
14: For each possible local structure Lk of V j , 1 ≤ k ≤ 2|V(V j )| , we count the number Nk of the appearance of Lk in the L MAGs

15: s′ = − ∑2|V(V j )|
k=1

Nk
L log Nk

L
16: if s ≤ s′ then
17: X ← V j , s ← s′
18: end if
19: end for
output: The selected intervention variable X

(1) there is no directed path from A to B other than A → B in M;
(2) for any C → A in M, C → B is also in M; and for any D ↔ A in M, either D → B or D ↔ B is in M;
(3) there is no discriminating path for A on which B is the endpoint adjacent to A in M.

The algorithm begins from an MAG M0 consistent to Mi , which can be obtained by transforming all the edges A◦ → B
to A → B and the circle component into a DAG without unshielded colliders according to Lemma 16.1. For any MAG M
consistent to Mi , we say a mark change is legitimate if it satisfies the three conditions in Proposition 2 and it is a circle in 
Mi . We obtain a new MAG M1 by a legitimate mark change. Then we decide to accept the candidate MAG or not. Given 
an MAG M, let S(M) denote the set of MAGs that can be obtained from M by a legitimate mark change according to 
Proposition 2. Denote the cardinality of S(M) by |S(M)|. We set the probability Q (M′ | M) of an MAG M transformed 
to another MAG M′ ∈ S(M) as 1/|S(M)|. Hence, the acceptance ratio ρ that is used to decide whether to accept or reject 
the candidate is

ρ = min

(
1,

p(M′)Q (M | M′)
p(M)Q (M′ | M)

)
= min

(
1,

|S(M)|
|S(M′)|

)
.

For MH algorithm, a stationary distribution equal to the desired distribution can be obtained if any two states can be 
transformed to each other in limited steps [60]. Here the last problem is whether any two MAGs consistent to Mi can be 
transformed to each other in limited steps. It has been proved by Zhang and Spirtes [58] that any two MAGs consistent 
to P can be transformed to each other in limited steps. We generalize it to the case for the MAGs consistent to Mi in 
Proposition 3. Hence, MH algorithm is valid to sample MAGs uniformly from the space of MAGs consistent to Mi .

Proposition 3 (generalization of Theorem 3 of Zhang and Spirtes [58] from P to M). Denote M the obtained graph by incorporating 
local BK in a PAG P with the orientation rules. Two MAGs M and M′ are consistent to M if and only if there exists a sequence of 
single mark changes in M such that

(1) after each mark change, the resulting graph is also an MAG consistent to M;
(2) after all the mark changes, the resulting graph is M′.

Remark 4. The proof directly follows that of Thm. 3 of Zhang and Spirtes [58]. The only difference is, to generalize the result 
that any two MAGs consistent to P can be transformed to each other in limited steps to the cases for two MAGs consistent 
to M, we say a mark in an MAG M consistent to M is invariant if it is present in all the MAGs consistent to M instead of 
all the MAGs consistent to P . Then the proof directly follows Zhang and Spirtes [58] because we have proved in Theorem 1
that all the properties (chordal, balanced, complete) of P used in their proof hold for M as well.

We propose Algorithm 4 to select the intervention variable X based on MH algorithm. From Line 2-Line 10, we execute 
MH algorithm to sample L MAGs consistent to Mi . Finally, we estimate the entropy in (1) and select X on Line 11-Line 19.
14
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Table 1
Number of correctly/wrongly learned marks in PAG, Number of interventions, number of correctly/ wrongly learned marks by interven-
tions, normalized SHD, and F1 score over 100 simulations with d = 10 and varying p in the format of mean ± std.

Stage Stage 1 Stage 2 Stage 3 Whole process

Strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1

Random-0.10
4.78 ± 3.11 0.40 ± 0.84

2.83 ± 1.21 3.92 ± 2.33 0.11 ± 0.55 0.02 ± 0.04 0.86 ± 0.28
MCMC-0.10 2.82 ± 1.13 4.01 ± 2.38 0.02 ± 0.14 0.02 ± 0.04 0.86 ± 0.28

Random-0.15
7.21 ± 3.85 0.41 ± 0.92

3.32 ± 1.19 5.21 ± 2.65 0.06 ± 0.31 0.02 ± 0.04 0.91 ± 0.18
MCMC-0.15 3.21 ± 1.01 5.22 ± 2.63 0.05 ± 0.30 0.02 ± 0.04 0.92 ± 0.16

Random-0.20
9.26 ± 3.94 0.63 ± 1.23

3.57 ± 1.17 6.28 ± 2.53 0.17 ± 0.51 0.04 ± 0.07 0.92 ± 0.16
MCMC-0.20 3.45 ± 1.13 6.38 ± 2.73 0.07 ± 0.36 0.03 ± 0.06 0.92 ± 0.16

Random-0.25
11.9 ± 4.03 1.58 ± 2.75

3.43 ± 1.36 6.94 ± 3.36 0.17 ± 0.51 0.08 ± 0.13 0.89 ± 0.18
MCMC-0.25 3.20 ± 1.17 7.01 ± 3.43 0.10 ± 0.41 0.08 ± 0.14 0.89 ± 0.18

Random-0.30
12.6 ± 4.05 2.69 ± 3.14

3.59 ± 1.26 6.94 ± 3.28 0.40 ± 0.93 0.15 ± 0.15 0.82 ± 0.19
MCMC-0.30 3.50 ± 1.28 6.97 ± 3.34 0.37 ± 0.80 0.15 ± 0.15 0.82 ± 0.19

5.2. Experiments

In this part, we conduct a simulation of the three-stage active learning framework. We generate 100 Erdös-Rényi random 
DAGs for each setting, where the number of variables d = {6, 8, 10, 12, 14, 16} and the probability of including each edge 
p ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. The weight of each edge is drawn from U [1, 2]. We generate 10000 samples from the linear 
structural equations, and take three variables as latent variables and the others as observed ones. In the implementation 
of the MH algorithm in Algorithm 4, we collect L = 1000 sampled MAGs. For each intervention variable X , we collect 200
samples under do(X = 2), and learn the circles at X by a two-sample test with a significance level of 0.05.

We compare the maximum entropy criterion (MaxEnt) with a baseline random criterion where we randomly select one 
variable with circles to intervene in each round. We evaluate the three stages respectively and show the results8 for only 
d = 10 in Table 1. More results are shown in Appendix C. In Stage 1, we obtain a PAG by running FCI algorithm with 
a significance level of 0.05. In Stage 2, we adopt the two criteria to select intervention variables. In Stage 3, we learn 
the marks with corresponding interventional data and orientation rules. We evaluate the performance of Stage 1 by # 
correct PAG/# wrong PAG, which denotes the number of edges that are correctly/wrongly identified by FCI. An edge is 
correctly/wrongly identified by FCI if the edge learned by FCI is identical/not identical to the true PAG. The performance 
of Stage 2 is evaluated by # int.. The effectiveness of MaxEnt is verified by noting that the number of interventions with 
MaxEnt is fewer than that with random criterion. And we evaluate the performance of Stage 3 by # correct int./# wrong 
int., which denotes the number of edges that are correctly/wrongly identified by interventions. An edge is correctly/wrongly 
identified by interventions if its existence is correctly identified in P but the direction is uncertain, and after interventions 
we learn its direction correctly/wrongly. We evaluate the performance of the whole process by Norm. SHD and F1. Norm. 
SHD denotes the normalized structural hamming distance (SHD), calculated by dividing SHD by d(d − 1)/2. F1 score is 
calculated by the confusion matrix to indicate whether the edge between any two vertices is correctly learned. According to 
the SHD and F1 score, the active framework can learn the MAG accurately when d or p is not large. And as shown by the 
evaluations of Stage 1 and Stage 3, the marks are learned accurately in Stage 3, and most of the mistakes are generated in 
Stage 1. Hence, in the framework, the PAG identification in the first stage is the bottleneck of having a good performance.

However, we note that although MaxEnt can reduce the number of interventions relative to random strategy, the re-
duction is inconspicuous (4.5% on average), which is less than the reduction taken by MaxEnt relative to random strategy 
in causal sufficiency setting (CS) [23]. The effectiveness of MaxEnt on MAG identification is weaken in causal insufficiency 
setting (CIS). We argue that it is due to the intrinsic hardness posed by the latent variables: the learned marks are mainly 
directly from BK, and the rules reveal fewer marks in CIS setting. For example, for A ◦− ◦ X , when the intervention on X
does not result in a change on A, only A◦ → X can be learned and another intervention is necessary to determine the circle 
at A. In the following, we conduct a further study to verify our view.

We consider all the possible aspects that could be the reason for the weaken effectiveness. There are three possible 
ones: 1. PAG learning. Learning PAG is harder than learning CPDAG which latent variables are not involved. 2. The MH 
sampling method: it is possible that the sampled MAGs are not representative enough to describe the uniform distribution 
of the MAGs consistent to a given PMG. 3. The basic assumption of MaxEnt does not hold under CIS. This is not quite 
intuitive. When we adopt MaxEnt, we uniformly sample MAGs from the space of MAGs. There is a potential assumption 
that each graph is with the equal possibility to be the true causal graph. It is valid when we generate directed cyclic graphs. 
However, it is not the case when we generate MAGs, where we first obtain a set of DAGs and then obtain MAGs by randomly 
selecting latent vertices. The core reason is on the non-bijective mapping from DAGs to MAGs. For example, consider a DAG 

8 The experimental results are slightly different from that of [40]. We re-conduct the experiments in this paper, because the MAG sampling method is 
improved in Algorithm 4. In the preliminary version, many sampled MAGs will be discarded, while through Proposition 3 all the sampled MAGs (Line 2-9) 
of Algorithm 4 can be used in the following steps.
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Table 2
The ratio of reduced intervention times by MaxEnt relative to random strat-
egy and the ratio of marks learned by rules under CS and CIS over 100 
simulations with varying d and p = 0.2 in the format of mean ± std.

d %diff-CIS %diff-CS %rule-CIS %rule-CS

6 3.48 ± 2.18% 15.5± 5.09% 16.0 ± 2.07% 57.8± 8.49%
8 6.63 ± 3.78% 19.9± 3.78% 21.0 ± 2.26% 65.6± 5.94%
10 7.64 ± 1.60% 21.4± 4.21% 22.1 ± 0.87% 67.3± 3.21%
12 8.16 ± 1.66% 24.5± 3.68% 20.6 ± 1.99% 70.3± 2.67%
14 7.43 ± 1.52% 24.6± 5.06% 20.4 ± 0.74% 70.7± 1.87%
16 6.45 ± 1.87% 24.2± 2.93% 19.7 ± 1.34% 71.0± 2.19%

of A, B, C with only a directed edge B → C , and another DAG of A, B, C with C → A → B ← C . When A is latent, both of 
them generates an MAG B → C . The non-bijective mapping makes the distribution of MAGs non-uniform, thereby the basic 
assumption of MaxEnt violated.9

In light of the three aspects, we conduct a study to compare the intervention number reduction of MaxEnt relative to 
random strategy under CS and CIS setting by removing the possible influence of these three aspects. For CS, we generate 
DAGs with d − 3 nodes to ensure the identical number of observed variables under CS and CIS. We learn PAG/CPDAG with 
the true covariance matrix, which guarantees the correctness of Stage 1. For MaxEnt, we use Algorithm 2 to list all the MAGs 
instead of MH sampling. And to ensure the equal possibility of each MAG, we randomly select an MAG M′ from the listed 
MAGs consistent to PAG P as the true one instead of the original MAG M. The two points above ensure the correctness of 
the entropy estimation. When we intervene on X , we directly take the local marks of X in M′ as the learned BK, which 
guarantees that the BK is correct. Hence, the whole process is ideal.

We estimate the ratio %diff-CIS/%diff-CS of reduced intervention times by MaxEnt relative to random strategy under 
CIS/CS. %diff-CIS is calculated by (#Intrandom − #IntMaxEnt)/#(IntMaxEnt), where #Intrandom and #IntMaxEnt denote the total 
number of interventions by random and MaxEnt in 100 simulations under CIS. %diff-CS is calculated similarly under CS. We 
repeat the experiments for 10 times and estimate the mean and standard error (std) accordingly. The results are shown in 
the second/third column of Table 2 for the case p = 0.2. See Appendix C for additional results. It demonstrates that MaxEnt 
has quite different contributions to the reduction of intervention numbers in the two settings. Note %diff-CIS (%diff-CS) is a 
ratio value related to d and ρ . Although # Intrandom and # IntMaxEnt increase with d and ρ , the ratio does not necessarily 
follow a monotonic trend. According to the experimental results, when d and ρ are not too small or large, %diff-CIS and 
%diff-CS are more likely to be large. Further, we divide the learned marks by interventions into two parts: those oriented 
directly by BK and those learned by the orientation rules. We show the ratio of marks learned by rules to the total learned 
marks for CIS and CS in the forth/fifth column of Table 2. The mean and std are calculated similar to %diff-CIS. It implies 
that for CIS, most learned marks are directly from BK, while for CS most learned marks are from applying orientation rules. 
Hence, a larger number of interventions is needed in learning an MAG in contrast to learning a DAG, which leads to the 
weakened effectiveness of MaxEnt under CIS.

6. Conclusion

In this paper, we propose sound and complete orientation rules that resolve the causal identification problem given 
local BK in the presence of latent variables. Based on the results, we present two applications. Firstly, for MAG listing, 
the new approach significantly improves the efficiency. Secondly, for causal discovery, we propose the first active learning 
framework in the presence of latent variables. In the future, it is worthy to investigate the causal identifiability given general 
background knowledge.

Beyond causal identification, there are two directions that might be interesting. A recent advancement is the introduction 
of a novel learning paradigm called abductive learning, which bridges logical reasoning and machine learning [61,62]. The 
causal relations, as a form of logical formula, have the potential to collaborate effectively with machine learning. In addition, 
the studies on causality have greatly influenced decision-making methods [12,63–65,46,66]. Recently, Zhou [67] emphasized 
the importance of correlation for prediction and causation for scientific discovery, while recognizing the need for an inter-
mediate relation for decision-making, referred to as rehearsation. Exploring the potential of decision-making without relying 
on causal identification could also be a valuable direction for future research.
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Appendix A. Orientation rules with observational data

In this section, we show the complete orientation rules proposed by Zhang [35] for causal discovery with observational 
data in the presence of latent variables and selection bias. There are eleven rules (R0 − R11). Since selection bias is not 
considered in this paper, we do not show the cases (R5 −R7) that happen only when there is selection bias. R0 is triggered 
according to the conditional independence relationship at the beginning of learning a PAG. It is evidently not triggered after, 
hence we do not show it as well.

R1: If A∗ → B ◦− ∗ R , and A and R are not adjacent, then orient the triple as A∗ → B → R .
R2: If A → B∗ → R or A∗ → B → R , and A ∗− ◦ R , then orient A ∗− ◦ R as A∗ → R .
R3: If A∗ → B ←∗R , A ∗− ◦ D ◦− ∗ R , A and R are not adjacent, and D ∗− ◦ B , then orient D ∗− ◦ B as D∗ → B .
R4: If 〈K , . . . , A, B, R〉 is a discriminating path between K and R for B , and B ◦− ∗ R; then if B ∈ Sepset(K , R), orient 
B ◦− ∗ R as B → R; otherwise orient the triple 〈A, B, R〉 as A ↔ B ↔ R .
R8: If A → B → R , and A◦ → R , orient A◦ → R as A → R .
R9: If A◦ → R , and p = 〈A, B, D, . . . , R〉 is an uncovered possible directed path from A to R such that R and B are not 
adjacent, then orient A◦ → R as A → R .
R10: Suppose A◦ → R , B → R ← D , p1 is an uncovered possible directed path from A to B , and p2 is an uncovered 
possible directed path from A to D . Let U be the vertex adjacent to A on p1 (U could be B), and W be the vertex 
adjacent to A on p2 (W could be D). If U and W are distinct, and are not adjacent, then orient A◦ → R as A → R .

Appendix B. Detailed proof of Theorem 1

We first provide some facts, which are used to prove Theorem 1.

Lemma 2. Consider Mi in Theorem 1 that satisfies the five properties. If there is a possible directed path from A to B in Mi , then there 
is a minimal possible directed path from A to B in Mi .

Proof. Suppose the possible directed path p = 〈V 0(= A), V 1, . . . , Vm(= B)〉. If p is minimal, the result trivially holds. If not, 
we can always find a subpath 〈V i, V i+1, . . . , V j〉, j − i ≥ 2 such that any non-consecutive vertices are not adjacent except 
for an edge between V i and V j . We will show the impossibility of V i ←∗V j in Mi . Suppose V i ←∗V j in Mi . Note there 
is a circle/tail at V i on the edge between V i and V i+1 due to the possible directed path p. If j − i = 2, there is always an 
edge V i+1 ←∗V i+2(= V j) due to the balanced/closed property of Mi , contradicting the possible directed path p. If j − i > 2, 
due to the non-adjacency of the V j and V i+1, there is either V i → V i+1 → . . . V j or V i ←∗V i+1 identified in P . The latter 
case is impossible due to the possible directed path p. For the former case, there is an almost directed or directed cycles, 
contradiction. Hence, the edge between V i and V j is either V i → V j or V i ◦− ∗ V j , we thus find a shorter possible directed 
path 〈V 0, V 1, . . . , V i, V j, V j+1, . . . , Vm〉 in Mi . Repeat this process until obtaining a possible directed path such that there 
is not a proper sub-structure where any non-consecutive vertices are not adjacent except for an edge between endpoints. 
This path is a minimal possible directed path. �
Lemma 3. Consider Mi in Theorem 1 that satisfies the five properties. If there is A∗ → B in Mi , then there is an edge as A∗ → V for 
any V in a connected circle component with B in Mi , and A and B are not connected in a circle component.

Proof. It is a direct conclusion of the balanced property of Mi . We first consider any vertex V 1 that has a circle edge with 
B , there is A∗ → B ◦− ◦ V 1 in Mi . According to the balanced property, there is A∗ → V 1. Similarly, we can conclude that the 
result holds for all the vertices in a circle component with B . Hence A and B cannot be in a circle component. �
Lemma 4. Consider Mi in Theorem 1 that satisfies the five properties. Suppose an MAG M consistent to Mi and the local BK of X
represented by C. Then V ∈ PossDe(X, Mi[−C]) if and only if V ∈ De(X, M).

Proof. We first prove the “only if” statement. If V ∈ PossDe(X, Mi[−C]), there is a minimal possible directed path p =
〈X, F1, . . . , Fm(= V )〉 by Lemma 2. Due to F1 /∈ C, there is X → V 1 in M. Hence p can only be directed in M, otherwise 
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there is at least one unshielded collider Fi−1∗ → Fi ←∗Fi+1 in M, which is identified in P and Mi , contradicting with that 
p is a minimal possible directed path from X to Fm in Mi[−C].

We then prove the “if” statement. According to the ancestral property, there must be a minimal directed path X →
F1 · · · → Fm−1, Fm(= V ) in M, where X is not adjacent to F2, . . . , Fm . The corresponding path in Mi of this path is a 
minimal possible directed path from X to V . If V /∈ PossDe(X, Mi[−C]), there can only be F1 ∈ C due to F2, F3, . . . , Fm /∈ C
as they are not adjacent to X . In this case X ←∗F1 should be represented by C, which contradicts X → F1 in M. �
Lemma 5. The PMG Mi+1 in Theorem 1 satisfies the closed property.

Proof. It follows from the third step of Algorithm 1. �
Lemma 6. Suppose Ms, 0 ≤ s ≤ i in Theorem 1 satisfy the five properties, there must exist an MAG consistent to Mi .

Proof. It follows from the complete property of Mi . �
Lemma 7. The PMG Mi+1 in Theorem 1 satisfies the invariant property.

Proof. Denote the graph obtained from Mi and the local BK represented by C after the first two steps of Algorithm 1 by 
M̄i+1. Note in the third step we only update M̄i+1 with the orientation rules. It is easy to prove the orientation rules are 
sound to orient M̄i+1 referring to Proposition 1 and the results of Ali et al. [68], Zhang [35] as new unshielded colliders, or 
directed or almost directed cycles will be introduced otherwise, we do not present the details here. It suffices to show that 
the non-circle marks introduced in the first two steps are invariant in all the MAGs consistent to Mi and the local BK of X
represented by C. For brevity, we call the MAGs consistent to Mi and C for short in the following.

Consider ∀K ∈ PossDe(X, Mi[−C]) and ∀T ∈ C. According to Lemma 4, there is K ∈ De(X, M). Considering T ∗ → X →
·· · → K , the edge between K and T can only be as K ←∗T in any MAG M due to the ancestral property if K �= X . If K = X , 
the orientation X ←∗T in M just follows the local BK of X represented by C. The proof completes.

Next we prove that the oriented edges in the second step are invariant in any MAG M consistent to Mi and C. Suppose 
the first edge oriented in the second step which is not invariant is Vl → V j . That is, there is Vl ←∗V j in an MAG M
consistent to Mi and C. The circle edges are oriented in two possible cases. We consider them one by one. (A) If FVl \FV j �=
∅ in Mi , there exists some vertex T ∈ FVl \FV j forming a collider V j∗ → Vl ←∗T in M. Then we prove the collider is 
unshielded. If V j is adjacent to T , we consider the edge in Mi . (a) The edge is not V j → T , otherwise there must be a 
directed or almost directed cycles X → ·· · → V j → T ∗ → X in M; (b) the edge is not V j ◦− ∗ T , otherwise T ∈ FV j ; (c) the 
edge is not V j ←∗T , otherwise in Mi there is a sub-structure T ∗ → V j ◦− ◦ Vl ◦− ∗ T , contradicting with the balanced property 
of Mi . Hence, T cannot be adjacent to V j as there is always a contradiction if adjacent. Thus V j∗ → Vl ←∗T is a new 
unshielded collider introduced in the second step. (B) If there is Vm → Vl ◦− ◦ V j where Vm ∈ PossDe(X, Mi[−C])\{X} is not 
adjacent to V j , a new unshielded collider Vm → Vl ←∗V j introduced in the second step. Hence in the MAG M consistent 
to P , there are always new unshielded colliders relative to P introduced, contradiction. �
Lemma 8. Consider Mi in Theorem 1 that satisfies the five properties. Denote FVl = {V ∈ C ∪ {X} | V ∗− ◦ Vl in Mi} for ∀Vl ∈
PossDe(X, Mi[−C])\{X}. For an edge J ◦− ◦ K in Mi[PossDe(X, Mi[−C])\{X}], if it is oriented as J → K in the second step of 
Algorithm 1 to obtain Mi+1 based on Mi and C, then there is a vertex Vm ∈ PossDe(X, Mi[−C])\{X} such that there is a minimal 
path Vm ◦− ◦ . . . ◦− ◦ V 1(= J ) ◦− ◦ V 0(= K ), m ≥ 1 in Mi[PossDe(X, Mi[−C])\{X}] where FVm ⊃FVm−1 = · · · =FV 0 .

Proof. A directed edge J → K is oriented in the second step only if in two situations: (1) FK ⊂ F J ; (2) FK = F J and 
there is another vertex L ∈ PossDe(X, Mi[−C])\{X} that is not adjacent to K and there is L → J . Note L → J can only 
be oriented in the second step as well, as it cannot be oriented in the first step when only the edges containing vertices 
in {C, X} are transformed, and it cannot appear in Mi otherwise either J → K or J ←∗K is identified in Mi due to the 
complete property of Mi .

If FV 0 ⊂ FV 1 , there is a desired path where m = 1. If FV 0 = FV 1 , we could find V 2 ∈ PossDe(X, Mi[−C])\{X} that is 
not adjacent to V 0 and there is V 2 → V 1 oriented in the second step. Similarly, we conclude either FV 1 ⊂ FV 2 , in which 
case there is a desired path where m = 2; or FV 1 = FV 2 , in which case there is V 3 ∈ PossDe(X, Mi[−C])\{X} that is not 
adjacent to V 1 and there is V 3 → V 2 oriented in the second step. Repeat the process and we can always find an uncovered 
path Vm ◦− ◦ . . . ◦− ◦ V 1(= J ) ◦− ◦ V 0(= K ), m ≥ 1 in Mi[PossDe(X, Mi[−C])\{X}] where FV 0 = · · · = FVm−1 ⊂ FVm . Finally, 
it suffices to prove that the path is minimal. If not, there exists a sub-structure Vk ◦− ◦ Vk+1 ◦− ◦ · · · ◦− ◦ V j, j > k + 2 where 
any two non-consecutive vertices are not adjacent except for an edge between Vk and V j . Since only the edges containing 
vertices in {C, X} are transformed in the first step, if there is a non-circle edge between Vk and V j before the second step, 
the edge is non-circle in Mi , in which case Vk and V j cannot be in a circle component according to Lemma 3, contradicting 
with the circle path comprised of Vk, Vk+1, . . . , V j . Hence there is Vk ◦− ◦ V j in Mi , in which case the chordal property of 
Mi is not fulfilled due to Vk ◦− ◦ Vk+1 ◦− ◦ · · · ◦− ◦ V j ◦− ◦ Vk . Thus the path can only be minimal. �
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Lemma 9. Consider Mi+1 in Theorem 1. The subgraph Mi+1[C] is a complete graph.

Proof. If it is not a complete graph, new unshielded colliders are introduced by the local BK of X represented by C when 
obtaining Mi+1 by Algorithm 1. Hence there does not exist an MAG consistent to Mi+1. According to Lemma 7 and the 
basic assumption that BK is correct, there is not an MAG consistent to Mi , contradicting with Lemma 6. �
Lemma 10. Suppose Ms, 0 ≤ s ≤ i in Theorem 1 satisfy the five properties. And the local BK of X is represented by C. Then there is 
PossDe(X, Mi[−C]) ∩ Pa(C, Mi) = ∅.

Proof. Suppose there is an edge V → T where V ∈ PossDe(X, Mi[−C]) and T ∈ C in Mi . According to Lemma 4, for any 
MAG oriented from Mi with the local BK of X represented by C, there is a directed or almost directed cycle X → ·· · V →
T ∗ → X , contradiction. Hence there is not an MAG consistent to Mi and local BK. Due to the assumption that BK is correct, 
there cannot be an MAG consistent to Mi , contradicting with Lemma 6. �
Lemma 11. Suppose Ms, 0 ≤ s ≤ i in Theorem 1 satisfy the five properties. In the second step of Algorithm 1 to obtain Mi+1 based on 
Mi and the local BK of X represented by C, there is not an edge oriented as both J ← K and J → K .

Proof. For simplicity, we use M1
i to denote Mi[PossDe(X, Mi[−C])\{X}]. At first, we prove for any distinct vertices J , K ∈

V(M1
i ), there is F J ⊆FK or FK ⊆F J . Otherwise, there must exist at least two vertices A, B ∈ C such that there is A ∗− ◦ J , 

B ∗− ◦ K , where A is not adjacent to K , and B is not adjacent to K in M1
i . Lemma 7 implies that the arrowhead added 

in Algorithm 1 is invariant in all the MAGs consistent to Mi and local BK of X represented by C (we call such MAG by 
MAG consistent to Mi and C for short). Hence the added arrowheads in the first step appear in any MAG M consistent to 
Mi and C. According to the condition, there are A∗ → J and B∗ → K in M. In this case, there are always new unshielded 
colliders in M relative to Mi no matter what the orientation of the edge connecting J and K is in M. Hence there are 
always new unshielded collider in the oriented graph relative to P . That is, there does not exist an MAG consistent to Mi
and C. Due to the correctness of BK and Lemma 7, there is not an MAG consistent to Mi , which contradicts with Lemma 6. 
Hence there is F J ⊆FK or FK ⊆F J .

If F J �= FK , without loss of generality, suppose F J ⊂ FK . Then J ← K is oriented in the second step. If there is also 
J → K oriented in the second step, it implies there is L → J oriented in the second step where L is not adjacent to K . In 
this case, no matter we orient J → K or J ← K , there is also a new unshielded collider at J or K , hence there does not 
exist an MAG consistent to Mi and C, a contradiction similar to the above case. In the following, we only consider the case 
of F J =FK . Suppose we orient both J → K and J ← K in the second step.

By Lemma 8, if we orient J → K in the second step, there is a minimal circle path V 0 ◦− ◦ V 1 ◦− ◦ · · · ◦− ◦ Vm(= J )
where FVm ⊃ FVm−1 = · · · = FV 0 . If we also orient J ← K in the second step, there is a circle path Vm−1(= J ) ◦− ◦ Vm(=
K ) ◦− ◦ · · · ◦− ◦ Vn, n > m in M1

i where FVm−1 = FVm = · · · = FVn−1 ⊂ Fn . Note Vm+1 is adjacent to Vm but is not adjacent 
to Vm−1, while Vm−2 is adjacent to Vm−1 but not adjacent to Vm , hence Vm−2 �= Vm+1, and Vm−2, Vm−1, Vm , Vm+1 are 
distinct vertices. Also note no circle edges in M1

i are oriented in the first step of Algorithm 1. Hence the circle component 
in M1

i is still chordal. Hence V 0 ◦− ◦ V 1 ◦− ◦ · · · ◦− ◦ Vn is also a minimal circle path, otherwise there must be a cycle comprised 
of circle edges whose length is larger than 3 without a chord because this cycle must contain Vm−2, Vm−1, Vm, Vm+1 where 
Vm−2 is not adjacent to Vm and Vm−1 is not adjacent to Vm+1, contradiction. Hence we consider the minimal circle path 
V 0 ◦− ◦ V 1 ◦− ◦ · · · ◦− ◦ Vn . According to Lemma 7, there must be V 0 → ·· · → Vm−1 and Vm ← ·· · Vn in any MAG M
consistent to Mi and C. However, in this case there are new unshielded colliders in M relative to Mi and C no matter 
what the orientation of the edge connecting Vm−1 and Vm is, that is, M is always inconsistent to P . Given the fact that 
the local BK represented by C is correct, there does not exist an MAG consistent to Mi , contradicting with Lemma 6. �
Lemma 12. Suppose Ms, 0 ≤ s ≤ i in Theorem 1 satisfy the five properties. If there exists an MAG consistent to Mi+1, then there is 
not a new unshielded collider introduced in Algorithm 1.

Proof. If there are new unshielded colliders introduced in Algorithm 1, due to the invariant property of Mi+1 in Lemma 7, 
there are additional unshielded colliders relative to P in any MAG consistent to Mi+1. Due to the assumption that the local 
BK is correct, there cannot be MAGs consistent to Mi , contradicting with Lemma 6. �
Lemma 13. Consider Mi in Theorem 1 that satisfies the five properties. In the third step of Algorithm 1 to obtain Mi+1 based on Mi
and the local BK of X represented by C, there are only edges as A ←◦B transformed to A ← B.

Proof. There are three possible transformations by the orientation rules: A ◦− ◦ B edges transformed to the edges with 
arrowheads; A ←◦B edges transformed to A ↔ B; A ←◦B edges transformed to A ← B (A◦ → B is equivalent to A ←◦B due 
to the generality of A and B). We will prove the impossibility of the first two cases. Denote the graph obtained from Mi
and BK regarding V i+1 after the first two steps of Algorithm 1 by M̄i+1. The proof idea is, suppose in the third step we 
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orient A ←◦R edges to A ↔ R or orient some circle edges. We can always find the first edge which is transformed from 
A ←◦R to A ↔ R or from circle edges to directed or bi-directed edges in the third step. If we prove that this edge can be 
neither an edge A ←◦R transformed to A ↔ B nor a circle edge, we have a contradiction. Hence we can conclude that there 
are no A ←◦R edges transformed to A ↔ R or circle edges transformed to directed or bi-directed edges in the third step.

If we transform some edges A ←◦R to A ↔ R or transform some circle edges in the third step, the first such edge is not 
as A ←◦R and transformed to A ↔ R . Note in the edge aforementioned an arrowhead is introduced. Recall the orientation 
rules. R3 is triggered in only the process of obtaining P . R′

4 does not transform an edge A ←◦R to bi-directed. R8 −R10
introduces only tails. Hence only R1 and R2 possibly introduce arrowheads. R1 cannot transform an edge A ←◦R to A ↔ R . 
It suffices to prove there are no edges A ←◦R transformed to A ↔ R by R2 in the third step of Algorithm 1. According to 
the condition of R2, when A ←◦R is transformed to A ↔ R by R2, there is (i) A → B ↔ R◦ → A or (ii) A ↔ B → R◦ → A. 
We then prove two results: (1) the bi-directed edges in (i) or (ii) cannot appear in Mi ; (2) the bi-directed edges cannot be 
introduced in the first two steps of Algorithm 1 to obtain Mi+1 based on the local BK of X represented by C.

(1) For (i), suppose there is B ↔ R in Mi . Since after the first two steps of Algorithm 1 there is A ←◦R , there is A ∗− ◦ R
in Mi . According to the balanced property of Mi , there is A ←∗B in Mi , in which case there cannot be A → B as case (i). 
For (ii), suppose there is A ↔ B in Mi . Since after the first two steps there is B → R , there must be B → R or B ◦− ∗ R in 
Mi . For the former case, A∗ → R is in Mi since Mi is closed under R2. For the latter case, A∗ → R is in Mi due to the 
balanced property of Mi . Both of them contradict with A ∗− ◦ R in the graph after the first two steps.

(2) For (i), there is R ◦− ∗ A in Mi . If B ↔ R is oriented in the first two steps of Algorithm 1, there is either B◦ → R
or B ←◦R in Mi . For the former case, according to the balanced property there is A ←∗B in Mi due to R ◦− ∗ A, which 
contradicts with A → B in case (i). For the latter case, since B ←◦R is transformed to B ↔ R by the first two steps of 
Algorithm 1, there is R ∈ PossDe(X, Mi[−C]) and B ∈ C. We discuss whether A ∈ C, if A ∈ C, there is A∗ → R oriented by the 
first step of Algorithm 1, contradicting with R◦ → A in case (i); if A /∈ C, since there is A ∗− ◦ R after the first two steps, there 
is A ∗− ◦ R in Mi , there is A ∈ PossDe(X, Mi[−C]), hence A ←∗B is oriented in the first step, contradicting with A → B in 
case (i). The contradiction for (ii) is similar, we do not present the details.

Combining the results in (1) and (2), the first edge cannot be transformed from A ←◦R to A ↔ R by R2 as well. Hence 
the first edge mentioned above is not an edge transformed from A ←◦R to A ↔ R as no orientation rules can achieve it.

If we transform some edges A ←◦R to A ↔ R or transform some circle edges in the third step, the first such edge is not 
a circle edge. Recall the orientation rules. The result is evident for R8 − R10 since the transformed edge is A◦ → R . R3 is 
triggered in only the process of obtaining P . When an edge is oriented by R′

4, it can be seen as that we first transform 
a circle to an arrowhead by R2, then transform the other circle to tail by R′

4. Hence it suffices to show that there are no 
circle edge oriented by R1 and R2 in the third step of Algorithm 1. We first consider R1. Suppose there is A∗ → B ◦− ◦ R
where A and R are not adjacent after the first two steps of Algorithm 1. Since Mi satisfies the complete property, the 
arrowhead at B on A∗ → B can only be oriented in the first two steps, otherwise the arrowhead is in Mi and thus there 
is either B → R or B ←∗R in Mi . Note the fact that in the first two steps of Algorithm 1 we only add arrowheads at the 
vertex in PossDe(X, Mi[−C]). Hence B ∈ PossDe(X, Mi[−C]). In addition, there is R /∈ C, otherwise B ←◦R is oriented in the 
first step of Algorithm 1. Hence there is R ∈ PossDe(X, Mi[−C]). The edge A∗ → B is oriented in either the first or second 
step. If A∗ → B is oriented in the first step, B → R should be oriented in the second step since A ∈ FB\FR ; if A∗ → B is 
oriented in the second step, B → R is also oriented in the second step, in both of cases there is not B ◦− ◦ R after the first 
two steps. Hence R1 cannot be triggered.

Then we prove the impossibility that a circle edge is transformed by R2. Suppose there is A → B∗ → R or A∗ → B → R , 
and A ◦− ◦ R in the third step. We consider the cases: (i) the arrowhead at R on the edge between B and R appears in Mi ;
(ii) the arrowhead at R on the edge between B and R is introduced in the first two steps of Algorithm 1 to obtain Mi+1
based on Mi and the local BK of X represented by C.

(i) For the first case, there is B∗ → R and A ◦− ◦ R in Mi . According to the balanced property of Mi , there is A ←∗B
in Mi . Hence the only case that R2 is triggered is that there is A ↔ B → R ◦− ◦ A after the first two steps, in which case 
there can only be A ←◦B in Mi due to the balanced property. In this case, A ←◦B is transformed to A ↔ B in only the 
first step. It implies that A ∈ C and B ∈ PossDe(X, Mi[−C]). If R ∈ C, there is B ↔ R oriented in the first step, contradicting 
with B → R after the first two steps. If R /∈ C, since there is B ∈ PossDe(X, Mi[−C]) and B → R or B ◦− ∗ R in Mi , there is 
B ∈ PossDe(X, Mi[−C]), thus there is A∗ → R oriented in the first step, contradicting with A ◦− ◦ R after the first two steps. 
Hence case (i) is impossible.

(ii) For the second case, note in the first two steps of Algorithm 1 we only add arrowheads at the vertex in 
PossDe(X, Mi[−C]), there is thus R ∈ PossDe(X, Mi[−C]). In this case there is A /∈ C, otherwise A∗ → R is oriented by 
the first step, contradiction. Due to R ∈ PossDe(X, Mi[−C]) and A ◦− ◦ R in Mi , there is A ∈ PossDe(X, Mi[−C]). We discuss 
whether B ∈ C. (ii.1) If B ∈ C, the only case that R2 is triggered is that A ↔ B → R in M̄i+1, which implies that there is 
A∗ → B and B → R or B ◦− ∗ R in Mi . If B → R in Mi , according to the closed property of Mi under R1, there is A∗ → R
in Mi , thus there is A∗ → R in M̄i+1, contradiction. If A∗ → B ◦− ∗ R in Mi , according to the balanced property of Mi , there 
is also A∗ → R in Mi , thus there is A∗ → R in M̄i+1, contradiction. (ii.2) If B /∈ C, if there exists an edge between A, B, R
that is not a circle edge in Mi , due to the balanced property of Mi and A ◦− ◦ R in Mi , there can be either A∗ → B ←∗R or 
A ←∗B∗ → R in Mi . We just show the contradiction for the first case, and the proof for the other is similar. If the case in R2
happens, there can only be A → B ↔ R in M̄i+1. Since we never add a new bi-directed edge between PossDe(X, Mi[−C])
in the first two steps of Algorithm 1, the edge B ↔ R is in Mi . However, in this case due to balanced property of Mi and 
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A ◦− ◦ R in Mi , there is A ↔ B in Mi , contradicting with A → B in M̄i+1. Hence in Mi there can only be A ◦− ◦ B ◦− ◦ R ◦− ◦ A. 
Note the edge between PossDe(X, P[−C]) is oriented in only the second step of Algorithm 1, where we transform circle 
edges to directed edges, hence there is A → B → R in M̄i+1. Then we will prove the impossibility of A → B → R ◦− ◦ A in 
M̄i+1. According to Lemma 8 and Lemma 11, if A → B → R is oriented, then there is FA ⊇FB ⊇FR . If there is FA ⊃FB or 
FB ⊃ FR , then there is FA ⊃ FR , hence there is A → R oriented by the second step of Algorithm 1, contradiction. If there 
is FA = FB = FR , we will prove its impossibility. According to Algorithm 1, there is another vertex C ∈ PossDe(X, Mi[−C])
such that C → A is oriented in the second step of Algorithm 1, C is not adjacent to B , and FC ⊇ FA . Hence there is 
FC ⊇ FR . We can see that R must be adjacent to C , otherwise A → R will be oriented to A → R in the second step of 
Algorithm 1. Due to Lemma 7, in each MAG M consistent to Mi and C, there is C → A → B → R , hence there can only 
be C → R in M. In this case there is a new unshielded collider C → R ← B in M relative to Mi , which implies that M
cannot be consistent to Mi , contradiction.

With (i) and (ii), it is concluded that R2 is not triggered in the third step of Algorithm 1. Combining the parts above, 
we conclude that for the first edge in the third step that is transformed from A ←◦R to A ↔ R or transformed from a circle 
edge to a directed or bi-directed edge cannot be a circle edge, the first edge cannot be a circle edge.

Combining the two parts above, we conclude that for the first edge in the third step that is transformed from A ←◦R to 
A ↔ R or transformed from a circle edge to a directed or bi-directed edge, the first edge can be neither an edge transformed 
from A ←◦R to A ↔ R , nor a circle edge. Hence there is always a contradiction if new arrowheads are introduced in the 
third step. Hence, in the third step of Algorithm 1, only the transformation as A ←◦R to A ← R is possibly triggered by the 
orientation rules. �
Lemma 14. The PMG Mi+1 in Theorem 1 satisfies the chordal property.

Proof. Denote the graph obtained from Mi and the local BK represented by C after the first two steps of Algorithm 1 by 
M̄i+1. According to Lemma 13, no circle edges are oriented in the third step of Algorithm 1. Hence, it suffices to prove that 
the circle component in M̄i+1 is chordal.

Note the edges in M̄i+1[−PossDe(X, Mi[−C])] are identical to those in Mi[−PossDe(X, Mi[−C])] since we do not 
orient the edges in this region in the first two steps. Due to chordal property of Mi and the fact that the subgraph of a 
chordal graph is also chordal, the circle component in M̄i+1[−PossDe(X, Mi[−C])] is chordal. We consider the circle edge 
connecting M̄i+1[PossDe(X, Mi[−C])] and M̄i+1[−PossDe(X, Mi[−C])]. Suppose an edge in the form of V 1 ◦− ◦ V 2, where 
V 1 ∈ PossDe(X, Mi[−C]) and V 2 ∈ V(Mi)\PossDe(X, Mi[−C]). If there is V 2 /∈ C, then there is V 2 ∈ PossDe(X, Mi[−C])
due to V 1 ∈ PossDe(X, Mi[−C]) and V 1 ◦− ◦ V 2, contradiction. Hence V 2 ∈ C. In the first step of Algorithm 1, V 1 ◦− ◦ V 2 is 
transformed to V 1 ←◦V 2. Hence after the first step there is not a circle edge connecting M̄i+1[PossDe(X, Mi[−C])] and 
M̄i+1[−PossDe(X, Mi[−C])]. And there are not circle edges between X and other vertices in M̄i+1 since the marks at X is 
definite after the first step. In the following, it suffices to show the circle component in M̄i+1[PossDe(X, Mi[−C])\{X}] is 
chordal. For simplicity, we use M̄1

i+1 to denote M̄i+1[PossDe(X, Mi[−C])\{X}].
We will use three facts in the following: (i) each circle edge in M̄i+1 is also a circle edge in Mi ; (ii) the circle edges in 

Mi[PossDe(X, Mi[−C])\{X}] are only possibly oriented in the second step of Algorithm 1 in the process of obtaining M̄i+1
from Mi ; (iii) Lemma 11.

Suppose the circle component in M̄1
i+1 is not chordal, there is V 0 ◦− ◦ V 1 ◦− ◦ · · · ◦− ◦ Vn ◦− ◦ V 0, n ≥ 3, where there is not a 

circle edge between every two unconsecutive vertices. There must exist non-circle edges between the unconsecutive vertices 
in this cycle, otherwise it is a cycle of length four or more without a chord in Mi , contradicting with the chordal property 
of Mi . Hence, we can always find a sub-structure Vk ◦− ◦ Vk+1 ◦− ◦ · · · ◦− ◦ Vm ← Vk, 0 ≤ k < m ≤ n without other directed 
edges between any two vertices among Vk, · · · , Vm except for Vm ← Vk (if there is another directed edge, for instance 
Vk+1 → Vm , we can find a proper sub-structure Vk+1 ◦− ◦ · · · ◦− ◦ Vm ← Vk+1 instead. And since the path is symmetric, 
Vk → Vm is without loss of generality.). According to Lemma 3, Vk → Vm can only be a circle edge in Mi . Hence in Mi

there is Vk ◦− ◦ Vk+1 ◦− ◦ · · · ◦− ◦ Vm ◦− ◦ Vk . Since the circle component in Mi in chordal, the length of the sub-structure 
can only be three. Hence it holds m = k + 2 and there is Vk ◦− ◦ Vk+1 ◦− ◦ Vk+2 ← Vk in M̄1

i+1. Next, we will prove its 
impossibility.

Since there is Vk ◦− ◦ Vk+1 ◦− ◦ Vk+2 ← Vk in M̄1
i+1, there is FVk = FVk+1 = FVk+2 . Considering Vk → Vk+2 is oriented 

in the second step, there is another vertex F1 ∈ PossDe(X, Mi[−C])\{X} such that there is F1 → Vk oriented in the second 
step where F1 is not adjacent to Vk+2. Evidently F1 is adjacent to Vk+1, otherwise Vk → Vk+1 is also oriented. Next, in 
light of F1 → Vk , there is FVk ⊆ FF1 according to Algorithm 1 and Lemma 11. If FVk ⊂ FF1 , there is also FVk+1 ⊂ FF1

since FVk = FVk+1 . Hence F1 → Vk+1. And due to FVk+1 = FVk+2 and the non-adjacency of F1 and Vk+2, in the second 
step Vk+1 → Vk+2 is oriented, contradicting with Vk+1 ◦− ◦ Vk+2. Hence, there is FVk = FF1 and F1 ◦− ◦ Vk+1 in M̄1

i+1. 
Here we find a sub-structure F1 ◦− ◦ Vk+1 ◦− ◦ Vk ← F1. Since F1 → Vk is oriented, there is another vertex F2 that is not 
adjacent to Vk in M̄1

i+1 such that F2 → F1 is oriented in the second step. Similar to the previous proof, there is not a 
contradiction only when FF2 = FF1 and F2 ◦− ◦ Vk+1. Repeat this process and we conclude that in any uncovered directed 
path Ft → ·· · → F1 → Vk → Vk+2, for any a vertex V ′ on the path, there is FV ′ =FVk and there is a circle edge between V ′
and Vk+1. It contradicts with Lemma 8. Hence, there cannot be a sub-structure as Vk ◦− ◦ Vk+1 ◦− ◦ Vk+2 ← Vk in M̄1 . �
i+1
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Lemma 15. The PMG Mi+1 in Theorem 1 satisfies the balanced property.

Proof. If there is V i∗ → V j ◦− ∗ Vk , we first prove that V i is adjacent to Vk . Suppose V i is not adjacent to Vk . This struc-
ture cannot appear in Mi due to the complete property of Mi . Hence V i∗ → V j is oriented in Algorithm 1. According 
to Lemma 13, the arrowhead is introduced in only the first two steps of obtaining Mi+1. And in the first two steps ar-
rowhead is added at the vertex in PossDe(X, Mi[−C]). Hence V j ∈ PossDe(X, Mi[−C]). In this case if Vk ∈ C, there is 
V j ←∗Vk oriented in the first step, contradiction. Then we consider the case Vk /∈ C. If (i) there is V j ◦− ◦ Vk in Mi , there 
is Vk ∈ PossDe(X, Mi[−C]), thus V j → Vk is oriented in the second step, contradiction. If (ii) V j◦ → Vk in Mi , it will be 
oriented as V j → Vk by R1 in the third step, contradiction. So V i is adjacent to Vk .

Next we consider the case that V i is adjacent to Vk . If there is V i∗ → V j ◦− ∗ Vk in Mi , there is V i∗ → Vk due to the 
balanced property of Mi , hence V i∗ → Vk is in Mi+1. It then suffices to consider there is V i ∗− ◦ V j ◦− ∗ Vk in Mi while 
V i∗ → V j ◦− ∗ Vk in Mi+1. Note in Algorithm 1, arrowheads are oriented only at the vertex in PossDe(X, Mi[−C]), thereby 
V j ∈ PossDe(X, Mi[−C]). In addition, Vk /∈ C, for otherwise there is V j ←∗Vk in Mi+1, contradiction. Combining V j ◦− ∗ Vk
and V j ∈ PossDe(X, Mi[−C]), there is Vk ∈ PossDe(X, Mi[−C]). We discuss whether V i ∈ C in the following.

(i). If V i /∈ C, there is V i ∈ PossDe(X, Mi[−C]) due to V i ∗− ◦ V j and V j ∈ PossDe(X, Mi[−C]). In this case the arrowhead 
is introduced in the second step of obtaining Mi+1 based on Mi . Hence there is V i ◦− ◦ V j in Mi . In this case either 
V i ◦− ◦ V j∗ → Vk ←∗V i , or V i ◦− ◦ V j ◦− ◦ Vk ◦− ◦ V i in Mi . For the former case, there is V i → V j∗ → Vk ←∗V i in Mi+1. And 
there cannot be V i ↔ Vk in Mi+1, otherwise there is V j ↔ Vk since Mi+1 is closed under R2, contradicting with V j ◦− ∗ Vk
in Mi+1. So balanced property holds in Mi+1 for the first case. For the latter case, V i → V j ◦− ◦ Vk is oriented in the second 
step. According to the proof of Lemma 14, there cannot be a structure V i ◦− ◦ Vk ◦− ◦ V j ← V i , thus there is not a circle-edge 
between V i and Vk . Since we only transform circle edges between PossDe(X, Mi[−C]) to directed edges in the second step, 
the edge between V i and Vk is directed. If V i → Vk is oriented in the second step, balanced property of Mi+1 is satisfied. 
If there is Vk → V i oriented in the second step, there is Vk → V j oriented by R2 in the third step, which contradicts with 
Lemma 13 that there are no circle edges oriented in the third step, impossibility.

(ii). If V i ∈ C, there is V i∗ → V j and V i∗ → Vk after the first step of Algorithm 1. It is then easy to prove that the balanced 
property is fulfilled, we do not give the details.

As shown above, balanced property also holds in Mi+1. �
Lemma 16. The PMG Mi+1 in Theorem 1 satisfies the complete property.

In Mi+1, the edges with circles are either A ◦− ◦ B or A◦ → B . In Lemma 16.1, we show that we can always obtain an 
MAG consistent to P and local BK regarding V 1, · · · , V i+1 by transforming ◦ → to → and the circle component into a DAG 
without unshielded colliders in Mi+1. Due to the chordal property of Mi+1, for the edge A ◦− ◦ B in Mi+1, it can be both 
A → B and A ← B in the MAGs consistent to P and local BK regarding V 1, · · · , V i+1 according to Lemma 5 of Meek [47]; 
and for the edge C◦ → D in Mi+1, it is C → D . In Lemma 16.2, we show for the edge A◦ → B in Mi+1, it can be A ↔ B . Here 
the most difficult part is to prove Lemma 16.1, i.e., we can always obtain an MAG consistent to P and local BK regarding 
V 1, · · · , V i+1 by transforming ◦ → to → and the circle component into a DAG without unshielded colliders in Mi+1. With 
this result, we can prove Lemma 16.2 totally following the procedure of that of Theorem 3 of Zhang [35], with the invariant, 
chordal, and balanced property of Mi+1. Since the proof of Lemma 16.2 is too lengthy and completely follows that of 
Theorem 3 of Zhang [35], we just show the proof sketch.

Lemma 16.1. Consider Mi+1 in Theorem 1. We orient a graph H from Mi+1 by transforming ◦ → to → and the circle component in 
Mi+1 into a DAG without unshielded colliders. Then H is an MAG consistent to P and local BK regarding V 1, · · · , V i+1 .

Proof. At first, we introduce some notations. We use M(M j), 0 ≤ j ≤ i +1 to denote the set of graphs that can be obtained 
from M j by transforming all edges ◦ → to → and orient the circle component into a DAG without unshielded colliders. Our 
proof is by induction: given the closed, invariant, chordal, and balanced property of Mi+1, we will prove that if there is 
a graph Hi+1 ∈ M(Mi+1) such that Hi+1 is not an MAG consistent to P and local BK regarding V 1, · · · , V i+1, then there 
is a graph Hi ∈ M(Mi)such that Hi is not an MAG consistent to P and local BK regarding V 1, · · · , V i . By induction, we 
conclude there is not a graph H0 ∈M(P) consistent to P , which contradicts with Theorem 2 of Zhang [35].

In the following there are mainly two parts. The first part is that we construct an auxiliary graph Hi based on Hi+1, 
and we show that Hi ∈ M(Mi). The second part is we show that if Hi is an MAG consistent to P and local BK regarding 
V 1, · · · , V i , then Hi+1 is an MAG consistent to P and local BK regarding V 1, · · · , V i+1.

(A) Auxiliary graph Hi ∈ M(Mi). We construct an auxiliary graph Hi based on Hi+1 by transforming only and all the 
bi-directed edges K ↔ T to K → T which are K ↔ T in Mi+1 but K◦ → T in Mi . Recall Algorithm 1 that obtains Mi+1
from Mi . There is K ∈ PossDe(X, Mi[−C]) and T ∈ C. We want to prove Hi ∈ M(Mi). Given the fact that the orientation 
of the circle component in Hi totally follows that in Hi+1, it suffices to show that there are no (almost) directed cycles or 
unshielded colliders introduced in Hi+1 relative to Mi . We show the process of obtaining Hi+1 from Mi as follows.

(Step 1) for all K ∈ PossDe(X, Mi[−C]) and ∀T ∈ C such that K ◦− ∗ T in Mi , orient K ←∗T (the mark at T remains); for all 
K ∈ PossDe(X, Mi[−C]) such that X ◦− ∗ K , orient X → K ;
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(Step 2) orient the subgraph Mi[PossDe(X, Mi[−C])\{X}] as follows until no feasible updates: for any two vertices V i

and V j such that V i ◦− ◦ V j , orient it as V i → V j if (i) FV i \FV j �= ∅ or (ii) FV i = FV j as well as there is a vertex 
Vk ∈ PossDe(X, Mi[−C])\{X} not adjacent to V j such that Vk → V i ◦− ◦ V j , where FVl = {V ∈ C ∪ {X} | V ∗− ◦ Vl in Mi};

(Step 3) obtain Mi+1 by applying the orientation rules until the graph is closed under the rules;
(Step 4) for the circle component in subgraph Mi+1[PossDe(X, Mi[−C])\{X}], orient it into a DAG without new unshielded 

colliders;
(Step 5) for the circle component in subgraph Mi+1[−PossDe(X, Mi[−C])], orient it into a DAG without new unshielded 

colliders;
(Step 6) transform edges ◦ → to →.

Note Step 1 - Step 3 are Algorithm 1. And in Step 4 - Step 6 we transform the edges ◦ → to → and transform the 
circle component in Mi+1 into a DAG without unshielded colliders. The feasibility of transforming the circle compo-
nent into a DAG without unshielded colliders is due to the fact that the circle component is chordal and every chordal 
graph has a perfect elimination order, through which we can orient the chordal circle component into a DAG without un-
shielded colliders. When proving Hi ∈ M(Mi), we only consider the circle component in Mi . We divide it into two parts, 
one is the circle component in Mi[PossDe(X, Mi[−C])\{X}], denoted by CC1; and the other is the circle component in 
Mi[−(PossDe(X, Mi[−C])\{X})], denoted by CC2.

Note the oriented edges of CC1 in Hi totally follows those in Hi+1, which are oriented by either Step 2 or Step 4. There 
are no new unshielded colliders or directed or almost directed cycles oriented in CC1 according to the three following facts.
(1). There are no new unshielded colliders or directed or almost directed cycles in CC1 oriented by Step 2 according to 
Lemma 12. (2). There are no unshielded colliders or directed or almost directed cycles in CC1 oriented by Step 4 because 
the circle component in Mi+1 is chordal and is oriented to a DAG without new unshielded colliders. (3). There are no new 
unshielded colliders or directed or almost directed cycles in CC1 oriented by both Step 2 and Step 4 due to the balanced 
property of Mi+1 and the impossibility of the transformation of circle edges to bi-directed edges.

Note the edges in CC2 also totally follow those in Hi+1. Although when X◦ → T in Mi where T ∈ C, there is X ↔ T in 
Hi+1 while X → T , such edge is not in the circle component CC2 because it is as X◦ → T in Mi . According to the orientation 
process, the sub-circle component of CC2 induced by V(CC2)\{X}, is oriented into a DAG without new unshielded colliders. 
Hence if there are new unshielded colliders or directed or almost directed cycles in edges of CC2, they contain X . (1) There 
are not new unshielded colliders as A∗ → X ←∗B in edges of CC2 in Step 2 due to Lemma 9. (2) There are no directed or 
almost directed cycles in CC2 containing X because for each vertex V in CC2 that has a circle edge with X , the edge is 
oriented as V → X .

Then we consider the circle edge in the circle component which connects K ∈ PossDe(X, Mi[−C])\{X} and T ∈
V(Mi)\(PossDe(X, Mi[−C])\{X}). There must be T ∈ C ∪ {X}, otherwise T ∈ PossDe(X, Mi[−C])\{X} due to K ∈
PossDe(X, Mi[−C])\{X} and K ◦− ◦ T . Hence in Hi+1 the circle edge is oriented as K ← T in Step 1 and 6. According to the 
relation between Hi+1 and Hi , there is K ← T in Hi . Hence, for each circle edge K ◦− ◦ T where K ∈ PossDe(X, Mi[−C])\{X}
and T ∈ V(Mi)\(PossDe(X, Mi[−C])\{X}), there is K ← T in Hi and T ∈ C ∪ {X}. Hence in Hi there is not a directed or 
almost directed cycles oriented from the circle component which contain both the vertices in PossDe(X, Mi[−C])\{X} and 
V(Mi)\(PossDe(X, Mi[−C])\{X}). If there is a new unshielded collider in Hi relative to Mi comprised of the vertices 
in both PossDe(X, Mi[−C])\{X} and V\(PossDe(X, Mi[−C])\{X}), the unshielded collider also appears in Mi+1, which 
contradicts with Lemma 12.

Hence, we prove that Hi ∈M(Mi).
(B) If Hi is an MAG consistent to P and local BK regarding V 1, · · · , V i , then Hi+1 is an MAG consistent to P and local 

BK regarding V 1, · · · , V i+1. Suppose Hi is an MAG consistent to P and local BK regarding V 1, · · · , V i . Since Hi+1 has the 
non-circle marks in Mi+1, and Hi belongs to the MEC represented by P , it suffices to prove that Hi+1 is an MAG Markov 
equivalent to Hi according to Lemma 1 of Zhang and Spirtes [58].

Note that the only difference between Hi+1 and Hi is that for ∀K ∈ PossDe(X, Mi[−C]) and ∀T ∈ C such that K◦ → T in 
Mi , there is K → T in Hi but K ↔ T in Hi+1. Denote the set of different edges in H0

i (=Hi) by Edge(H0
i ) = {K → T in Hi |

K ∈ PossDe(X, Mi[−C]), T ∈ C, K◦ → T in Mi}. We could obtain Hi+1 from Hi by transforming these edges to bi-directed 
edges. We transform one edge one time. At first, we select the edge K → T in Edge(H0

i ) according to the selection criterion 
that (1) we select K that is not an ancestor of any other V 1 such that there is an edge V 1 → V 2 in Edge(H0

i ); and (2)

given K selected in the first step, we select T that is not a descendant of any other V 2 such that there is an edge K → V 2

in Edge(H0
i ). Then we obtain Edge(H1

i ) by deleting K → T from Edge(H0
i ). By such operation, we obtain a new graph H1

i

and Edge(H1
i ). Repeat the process above and we could obtain a series of graphs H0

i (= Hi), H1
i , · · · , Hm

i , Hm+1
i (= Hi). We 

prove the desired result by induction. Given Hi is an MAG consistent to P , we will show that for any H j
i and H j+1

i , where 
0 ≤ j ≤ m, if H j

i is an MAG, then H j+1
i is an MAG Markov equivalent to H j

i . Suppose the edge transformed in H j
i is K → T . 

According to Lemma 1 of Zhang and Spirtes [58], given H j
i is an MAG, it suffices to show that (1) there is no directed path 

from K to T in H j
i other than K → T ; (2) for any A → K in H j

i , A → T is also in H j
i ; and for any B ↔ K in H j

i , either 
B → T or B ↔ T is in H j ; (3) there is no discriminating path for K on which T is the endpoint adjacent to K in H j .
i i
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(1) For the sake of contradiction, suppose there is a directed path from K to T in H j
i other that K → T , we suppose 

the minimal directed path of this path is K (= F0) → F1 → ·· · → Fm → T (= Fm+1). Since we only transform directed edges 
to bi-directed edges in the whole process, the directed path is also in H0

i . We first prove that there must be a vertex 
Fn, 1 ≤ n ≤ m such that Fn ∈ C. Otherwise, all of F1, · · · , Fm belong to PossDe(X, Mi[−C]) since F0 ∈ PossDe(X, Mi[−C])
and there is a possible directed path comprised of F0, F1, · · · , Fm in Mi . (i.) If there is Fm → T in Mi , it contradicts with 
Lemma 10. (ii.) If there is Fm ◦− ◦ T in Mi , according to the first step of orientation procedure to construct Hi+1, there is 
Fm ← T in Hi+1. Since we never reverse an edge in the process from Hi to Hi+1, there cannot be an edge Fm → T in 
H j

i . (iii.) If there is Fm◦ → T in Mi , there is Fm → T in H0
i and H j

i . According to the edge selection criterion, when there 
is both Fm → T and K → T in H j

i , we transform Fm → T ahead of K → T due to K → F1 → ·· · → Fm , contradiction. For 
the other situations for the edge between Fm and T in Mi , there cannot form an edge Fm → T in H j

i . Hence we conclude 
there is a vertex Fn, 1 ≤ n ≤ m such that Fn ∈ C.

Without loss of generality, we suppose Fn ∈ C and Fl /∈ C, ∀1 ≤ l ≤ n − 1. We first prove there is not a vertex Fl, 1 ≤ l ≤
n − 1 adjacent to T . If there is, since Fl → ·· · → Fm → T in Hi , there is Fl → T in Hi due to the ancestral property. In this 
case there is a directed path F1 → ·· · Fl → T without vertices in C in Hi , which implies that there is a possible directed 
path where the sub-path from F1 to Fl is minimal and any variables on the path do not belong to C, contradicting the 
result we prove above. Hence Fl cannot be adjacent to T for ∀1 ≤ l ≤ n − 1. (i.) If n ≥ 2, (i.a.) if there Fn ◦− ∗ T or Fn → T
in Mi , there is an uncovered possible directed path comprised of K , F1, · · · , Fn, T in Mi where F1 is not adjacent to T . In 
this case K◦ → T has been oriented as K → T in Mi by R9 due to Mi is closed under the orientation rules, contradiction.
(i.b.) If there is Fn ←∗T in Mi , note the non-adjacency of T and Fn−1. Due to the edge T ∗ → Fn and the complete property 
of Mi , the mark at Fn on the edge between Fn−1 and Fn is identifiable in Mi . And due to the possible directed path, there 
is Fn−1 → Fn in Hi , there can only be Fn−1 → Fn or Fn−1◦ → Fn in Mi . The former case contradicts with Lemma 10 due to 
Fn−1 ∈ PossDe(X, Mi[−C]) and Fn ∈ C. For the latter case, the edge Fn−1 → Fn should be transformed to bi-directed edge 
ahead of K → T , hence there cannot be an edge Fn−1 → Fn in H j

i , contradiction. (ii.) If n = 1, there is K → T ′ → T in Hi+1, 
where T ′ ∈ C. In this case if there is not K◦ → T ′ in Mi , there cannot be an edge K → T ′ in H j

i ; if there is K◦ → T ′ in Mi , 
there is thus both K → T ′ and K → T in Hi , K◦ → T ′ is transformed to bi-directed ahead of K → T due to T ′ → T , thereby 
there is not an edge K → T ′ in H j

i . Hence there cannot be a sub-structure K → T ′ → T in H j
i , contradiction. Hence, there 

is always a contradiction if there is a directed path from K to T in H j
i .

(2) In this part, we prove that if there is an edge A → K in H j
i , there is A → T in H j

i ; if there is B ↔ K in H j
i , either 

B → T or B ↔ T is in H j
i . Note there is K◦ → T in Mi , where K ∈ PossDe(X, Mi[−C]) and T ∈ C.

It suffices to show that for A such that A → K or A ↔ K in H j
i , A is adjacent to T . According to the ancestral property 

of H j
i , we get the desired result due to K → T in H j

i .
We discuss the possible cases of the edge between A and K in Mi . If there is A∗ → K◦ → T in Mi , due to the closed 

property of Mi , A is adjacent to T . Hence the result evidently holds.
If there is A ◦− ◦ K in Mi , we discuss whether A ∈ C. If not, then A ∈ PossDe(X, Mi[−C]) due to K ∈ PossDe(X, Mi[−C]). 

Suppose T is not adjacent to A for contradiction. In this case, we orient K → A in the second step due to T ∈FK \FA , there 
is thus K → A in H0

i . Considering we never reverse a directed edge in the whole procedure, there is not A → K in H j
i . 

And since only the directed edge connecting a vertex in C and a vertex in PossDe(X, Mi[−C]) is possibly converted to a 
bi-directed edge in the process from H0

i to H j
i , A ← K cannot be transformed to A ↔ K due to A, K ∈ PossDe(X, Mi[−C]), 

so that A ↔ K is not in H j
i . Hence when A ◦− ◦ K in Mi and A /∈ C, there is not an edge A → K or A ↔ K in H j

i . If A ∈ C, 
A is adjacent to T due to T ∈ C and Lemma 9. Hence the result holds when A ∈ C. We conclude that if there is A ◦− ◦ K in 
Mi , the result holds.

If there is A ←◦K in Mi , there is A ← K in Hi . Since we never reverse a directed edge in the whole process, and only 
the directed edge connecting a vertex in C and a vertex in PossDe(X, Mi[−C]) is possibly converted to a bi-directed edge 
in the process from Hi to Hi+1, we only need to consider there is A ↔ K in H j

i , where A ∈ C. In this case, A is adjacent to 
T according to Lemma 9. The result holds.

For the other cases for the edge between A and K in Mi except for A∗ → K , A ◦− ◦ K , and A ←◦K , there cannot be an 
edge A → K or A ↔ K in H j

i . We thus have considered all the possible cases and conclude that if there is A → K in H j
i , 

there is A → T in H j
i ; if there is A ↔ K in H j

i , either A → T or A ↔ T is in H j
i according to the balanced property.

(3) In this part, we prove that there is no discriminating path for K on which T is the endpoint adjacent to K in H j
i . The 

proof refers to that of (T3) of Theorem 3 by Zhang [35], with modifications due to the additional background knowledge.
Suppose a path p = (V 0, V 1, · · · , Vn = K , T ) in H j

i which is a discriminating path for K . Without loss of generality, sup-

pose p is the shortest path. According to the construction of Edge(H j
i ), there is K◦ → T in Mi+1. We derive a contradiction 

by showing that p is already a discriminating path in Mi . Hence there cannot be an edge K◦ → T in Mi , otherwise if i ≥ 1
(there is local BK) it will be oriented as K → T by R′

4 or if i = 0 (there is not local BK) it will be oriented as K → T or 
K ↔ T by R4 due to the closed property of Mi . There is Vn−1 ↔ K in H j , for otherwise there would be a directed path 
i
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K → Vn−1 → T from K to T other than the edge K → T in H j
i , contradiction. It follows that every edge on the subpath 

from V 1 to K is bi-directed in H j
i .

Next we will prove that there is an edge V 0∗ → V 1 in Mi . Suppose for contradiction, the edge is either V 0 ◦− ◦ V 1 or 
V 0 ←◦V 1.

(i). Suppose V 0 ◦− ◦ V 1 in Mi . There cannot be an edge V 1 ↔ V 2 in Mi , for otherwise there is V 0 ↔ V 2 in Mi due 
to the balanced property of Mi , which contradicts with the shortest discriminating path p. Since we do not transform a 
circle edge in Mi to a bi-directed edge, the edge between V 1 and V 2 are either V 1◦ → V 2 or V 1 ←◦V 2. For the former 
case, V 0 is adjacent to V 2, for otherwise V 0∗ → V 1 ←∗V 2 is identifiable in P and Mi since V 0∗ → V 1 ↔ V 2 in H j

i and H j
i

is an MAG Markov equivalent to Hi which belongs to the MEC represented by P , contradicting with V 0 ◦− ◦ V 1 in Mi . 
According to the balanced property of Mi , there is V 0∗ → V 2 in Mi thus there is V 0∗ → V 2 in H j

i , in which case there is 
a shorter discriminating path without V 1, contradiction. For the latter case, there is V 0 ◦− ◦ V 1 ←◦V 2 in Mi . As shown by 
the orientation procedure, we only add an arrowhead at the vertex in PossDe(X, Mi[−C]), and we never orient an edge 
connecting two vertices from PossDe(X, Mi[−C]) as bi-directed, hence V 0∗ → V 1 and V 1 ↔ V 2 cannot be oriented at the 
same time in the process of obtaining Hi+1 from Hi .

(ii). Suppose V 0 ←◦V 1. Due to the fact that a bi-directed edge is oriented in H j
i compared to Mi only if the edge 

connects a vertex in PossDe(X, Mi[−C]) and a vertex in C, and the fact that an arrowhead is added only at the vertex in 
PossDe(X, Mi[−C]), there is V 0 ∈ C and V 1 ∈ PossDe(X, Mi[−C]). And due to T ∈ C and the non-adjacency of T and V 0, 
there is a contradiction with the condition that Mi[C] is complete in Lemma 9.

We conclude that there is V 0∗ → V 1 in Mi . The remaining part is to prove by induction that for every 1 ≤ i ≤ n − 1, 
V i is a collider and a parent of T in Mi . V 1 → T is evident due to the non-adjacency of V 0 and T . Note T ∈ C and 
V 1 → T in Mi , thus V 1 /∈ PossDe(X, Mi[−C]) due to PossDe(X, Mi[−C]) ∩Pa(C, Mi) = ∅ as Lemma 10. Hence, there cannot 
be an edge V 1 → V 2 in Mi since the edge cannot be oriented as V 1 ↔ V 2 in H j

i . If there is not a collider at V 1 in 
Mi , there is V 1◦ → V 2. It is impossible because we never transform it to bi-directed in the process from Mi to H0

i as 
V 1 /∈ PossDe(X, Mi[−C]). Hence the collider is identifiable in Mi . Similarly, we could prove V 2 → T in Mi . Then we prove 
there is V 2 ←∗V 3 in Mi . If the edge is a circle edge, then there must be V 1 ◦− ◦ V 3 according to the balance property, 
in which case there is a shorter discriminating path, contradiction. Then we consider the edge is V 2∗ → V 3. Due to T ∈ C
and PossDe(X, Mi[−C]) ∩ Pa(C, Mi) = ∅, V 2 /∈ PossDe(X, Mi[−C]). Hence V 2∗ → V 3 in Mi can never be transformed to 
bi-directed since arrowhead is added at only the vertex in PossDe(X, Mi[−C]). Thus V 1 ↔ V 2 ←∗V 3 is identifiable in Mi . 
By such way, we prove that the path is a discriminating path for K in Mi . Thus there cannot be an edge K◦ → T in Mi , 
otherwise it will be oriented as K → T by R′

4 if i ≥ 1 and oriented as K → T or K ↔ T if i = 0 since Mi is closed under 
the orientation rules, contradicting with K◦ → T in Mi .

Hence, we conclude that Hi+1 is an MAG Markov equivalent to Hi . It is evident that Hi+1 has the non-circle marks in 
Mi+1. Since Hi belongs to the MEC represented by P , Hi+1 also belongs to the MEC. We conclude that Hi+1 is an MAG 
consistent to P and the local BK regarding V 1, · · · , V i+1. The proof in this part completes.

Hence, (A) Hi ∈ M(Mi) (B), if a graph Hi+1 ∈ M(Mi+1) is not an MAG consistent to P and the local BK regarding 
V 1, · · · , V i+1, then a graph Hi ∈M(Mi) is not an MAG consistent to P and the local BK regarding V 1, · · · , V i . By induction, 
we conclude that if a graph Hi+1 ∈M(Mi+1) is not an MAG consistent to P and the local BK regarding V 1, · · · , V i+1, there 
is an MAG H0 ∈M(P) that is not an MAG consistent to P , which contradicts with Theorem 2 of Zhang [35]. �
Lemma 16.2. Suppose there is A◦ → B in the PMG Mi+1 in Theorem 1, then there is an MAG M1 consistent to P and local BK 
regarding V 1, · · · , V i+1 with A ↔ B.

Proof. This part totally follows Theorem 3 of Zhang [35] with the results we have proved before. Hence we only show the 
sketch. We take Mi+1 as the PA F C I of Zhang [35]. Note we do not consider selection bias in this paper. Hence the cases 
of P2, P3, P4 (Lemma A.2, Lemma A.4, Lemma A.5) of Zhang [35] will not happen. And P1, i.e., the balanced property, has 
been proved to hold in Mi+1 according to Lemma 15. With the balanced property, Lemma B.1-Lemma B.18 of Zhang [35], 
which are sufficient to prove Theorem 3 of Zhang [35], also hold in Mi+1 because there are not other conditions involved. 
As proved by Lemma 16.1, we prove that when we transform the ◦ → edges to →, and orient the circle component into 
a DAG without new unshielded colliders based on Mi+1, we can always obtain an MAG consistent to P and local BK 
regarding V 1, · · · , V i+1. It plays the roles of Theorem 2 of Zhang [35]. We can construct a graph Hi+1 with A ↔ B by the 
same procedure of Theorem 3 of Zhang [35] and prove Hi+1 is an MAG that is Markov equivalent to an MAG H0 obtained 
from Mi+1 by transforming ◦ → edges to → and transforming the circle component in Mi+1 into a DAG DA◦→B defined 
in Theorem 3. According to Lemma 16.1, H0 is an MAG in the MEC represented by P . Hence Hi+1 is an MAG in the MEC 
represented by P . And since H has the non-circle edges in Mi+1, H is an MAG with A ↔ B consistent to P and local BK 
regarding V 1, · · · , V i+1. �
Proof of Theorem 1. The closed, invariant, chordal, balanced, complete properties of Mi+1 are proved by Lemma 5, 7, 14, 
15, 16. �
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Appendix C. Additional experimental results in Section 5.2

We show the experimental results for the respective three stages of the active learning framework in Tables C.3/C.4/C.5/
C.6/C.7 for d = 6/8/12/14/16 (see Table 1 in the main paper for d = 10). And we show the ratio of reduced intervention 
times by MaxEnt relative to random strategy and the ration of marks learned by rules to the total learned marks under 
CIS/CS in Table C.8.

Table C.3
Number of correctly/wrongly learned marks in PAG, Number of interventions, number of correctly/ wrongly learned marks by interven-
tions, normalized SHD, and F1 score over 100 simulations with d = 6 and varying p in the format of mean ± std.

Stage Stage 1 Stage 2 Stage 3 Whole process

strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1 score

Random-0.10
0.78 ± 1.30 0.10 ± 0.30

0.73 ± 0.93 0.73 ± 1.22 0.01 ± 0.10 0.04 ± 0.10 0.89 ± 0.31
MCMC-0.10 0.65 ± 0.86 0.72 ± 1.22 0.02 ± 0.20 0.04 ± 0.10 0.89 ± 0.31

Random-0.15
1.35 ± 1.38 0.06 ± 0.40

1.11 ± 0.96 1.22 ± 1.35 0.09 ± 0.40 0.05 ± 0.13 0.87 ± 0.33
MCMC-0.15 0.98 ± 0.86 1.25 ± 1.34 0.06 ± 0.31 0.05 ± 0.13 0.89 ± 0.32

Random-0.20
1.51 ± 1.53 0.05 ± 0.39

1.14 ± 0.97 1.33 ± 1.44 0.10 ± 0.41 0.05 ± 0.13 0.88 ± 0.32
MCMC-0.20 1.00 ± 0.86 1.32 ± 1.39 0.11 ± 0.53 0.05 ± 0.15 0.89 ± 0.30

Random-0.25
1.93 ± 1.59 0.09 ± 0.38

1.41 ± 0.88 1.71 ± 1.47 0.06 ± 0.31 0.05 ± 0.13 0.88 ± 0.32
MCMC-0.25 1.33 ± 0.83 1.67 ± 1.38 0.10 ± 0.50 0.06 ± 0.16 0.88 ± 0.32

Random-0.30
2.64 ± 1.79 0.05 ± 0.39

1.60 ± 0.84 2.24 ± 1.68 0.08 ± 0.54 0.04 ± 0.15 0.91 ± 0.27
MCMC-0.30 1.55 ± 0.82 2.25 ± 1.62 0.07 ± 0.33 0.05 ± 0.13 0.92 ± 0.25

Table C.4
Number of correctly/wrongly learned marks in PAG, Number of interventions, number of correctly/ wrongly learned marks by interven-
tions, normalized SHD, and F1 score over 100 simulations with d = 8 and varying p in the format of mean ± std.

Stage Stage 1 Stage 2 Stage 3 Whole process

strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1 score

Random-0.10
2.43 ± 2.26 0.32 ± 0.72

1.73 ± 1.27 2.15 ± 2.01 0.05 ± 0.30 0.04 ± 0.07 0.84 ± 0.33
MCMC-0.10 1.63 ± 1.10 2.17 ± 2.01 0.03 ± 0.22 0.04 ± 0.07 0.85 ± 0.32

Random-0.15
3.72 ± 2.61 0.25 ± 0.56

2.17 ± 1.07 3.12 ± 1.98 0.04 ± 0.24 0.03 ± 0.06 0.89 ± 0.26
MCMC-0.15 2.09 ± 1.06 3.09 ± 1.92 0.07 ± 0.41 0.03 ± 0.06 0.88 ± 0.26

Random-0.20
5.12 ± 3.18 0.32 ± 1.16

2.16 ± 1.03 3.61 ± 2.16 0.14 ± 0.55 0.05 ± 0.12 0.91 ± 0.21
MCMC-0.20 2.21 ± 1.01 3.67 ± 2.17 0.08 ± 0.39 0.04 ± 0.12 0.93 ± 0.19

Random-0.25
6.17 ± 3.42 0.44 ± 1.31

2.56 ± 1.17 4.62 ± 2.75 0.15 ± 0.56 0.06 ± 0.14 0.90 ± 0.23
MCMC-0.25 2.52 ± 1.02 4.57 ± 2.70 0.20 ± 0.62 0.06 ± 0.13 0.91 ± 0.20

Random-0.30
7.91 ± 3.84 0.38 ± 0.95

2.97 ± 1.18 5.57 ± 3.09 0.20 ± 0.51 0.06 ± 0.10 0.93 ± 0.13
MCMC-0.30 2.85 ± 1.09 5.43 ± 2.96 0.34 ± 0.79 0.07 ± 0.10 0.92 ± 0.12

Table C.5
Number of correctly/wrongly learned marks in PAG, Number of interventions, number of correctly/ wrongly learned marks by interven-
tions, normalized SHD, and F1 score over 100 simulations with d = 12 and varying p in the format of mean ± std.

Stage Stage 1 Stage 2 Stage 3 Whole process

Strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1

Random-0.10
7.93 ± 3.78 0.48 ± 1.02

3.84 ± 1.34 5.95 ± 2.37 0.09 ± 0.40 0.02 ± 0.03 0.92 ± 0.14
MCMC-0.10 3.67 ± 1.24 5.95 ± 2.39 0.09 ± 0.38 0.02 ± 0.03 0.92 ± 0.14

Random-0.15
11.0 ± 3.66 0.87 ± 1.68

4.49 ± 1.33 7.12 ± 2.59 0.17 ± 0.65 0.03 ± 0.05 0.92 ± 0.11
MCMC-0.15 4.07 ± 1.09 7.20 ± 2.68 0.09 ± 0.43 0.03 ± 0.05 0.92 ± 0.11
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Table C.5 (continued)

Stage Stage 1 Stage 2 Stage 3 Whole process

Strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1

Random-0.20
14.5 ± 4.11 2.06 ± 2.77

4.69 ± 1.22 9.04 ± 2.96 0.27 ± 0.58 0.06 ± 0.08 0.88 ± 0.13
MCMC-0.20 4.40 ± 1.14 9.03 ± 3.03 0.28 ± 0.64 0.06 ± 0.08 0.88 ± 0.14

Random-0.25
14.3 ± 3.74 5.46 ± 5.19

4.10 ± 1.47 7.84 ± 3.36 0.41 ± 0.85 0.16 ± 0.15 0.75 ± 0.21
MCMC-0.25 3.98 ± 1.58 7.89 ± 3.40 0.36 ± 0.67 0.16 ± 0.15 0.75 ± 0.21

Random-0.30
14.3 ± 4.32 8.00 ± 6.21

4.13 ± 1.55 7.43 ± 3.49 0.65 ± 1.04 0.24 ± 0.18 0.65 ± 0.24
MCMC-0.30 4.09 ± 1.56 7.49 ± 3.51 0.59 ± 0.95 0.24 ± 0.18 0.65 ± 0.24

Table C.6
Number of correctly/wrongly learned marks in PAG, Number of interventions, number of correctly/ wrongly learned marks by interven-
tions, normalized SHD, and F1 score over 100 simulations with d = 14 and varying p in the format of mean ± std.

Stage Stage 1 Stage 2 Stage 3 Whole process

Strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1

Random-0.10
12.1 ± 4.91 0.67 ± 1.12

5.20 ± 1.41 8.27 ± 2.90 0.17 ± 0.55 0.02 ± 0.02 0.91 ± 0.13
MCMC-0.10 4.71 ± 1.42 8.25 ± 2.92 0.19 ± 0.56 0.02 ± 0.02 0.91 ± 0.13

Random-0.15
16.8 ± 4.49 1.90 ± 3.10

5.45 ± 1.75 10.4 ± 3.70 0.28 ± 0.75 0.04 ± 0.06 0.90 ± 0.14
MCMC-0.15 4.93 ± 1.38 10.5 ± 3.71 0.20 ± 0.55 0.04 ± 0.06 0.90 ± 0.13

Random-0.20
16.6 ± 5.56 6.50 ± 5.85

5.18 ± 1.68 10.3 ± 4.16 0.44 ± 0.88 0.13 ± 0.11 0.74 ± 0.21
MCMC-0.20 5.09 ± 1.61 10.4 ± 4.29 0.43 ± 0.82 0.13 ± 0.11 0.74 ± 0.21

Random-0.25
14.3 ± 5.73 11.6 ± 8.18

5.27 ± 1.52 9.86 ± 3.98 0.84 ± 1.14 0.23 ± 0.16 0.59 ± 0.25
MCMC-0.25 5.20 ± 1.55 9.83 ± 4.04 0.87 ± 1.14 0.23 ± 0.16 0.59 ± 0.25

Random-0.30
12.6 ± 5.77 16.8 ± 9.07

5.31 ± 1.63 8.82 ± 3.84 1.30 ± 1.54 0.33 ± 0.17 0.45 ± 0.23
MCMC-0.30 5.37 ± 1.53 8.88 ± 3.76 1.24 ± 1.35 0.33 ± 0.17 0.45 ± 0.23

Table C.7
Number of correctly/wrongly learned marks in PAG, Number of interventions, number of correctly/ wrongly learned marks by interven-
tions, normalized SHD, and F1 score over 100 simulations with d = 16 and varying p in the format of mean ± std.

Stage Stage 1 Stage 2 Stage 3 Whole process

Strategy-p # correct PAG # wrong PAG # int. # correct int. # wrong int. Norm. SHD F1

Random-0.10
16.0 ± 5.48 1.19 ± 1.90

10.4 ± 3.41 0.27 ± 0.78 6.12 ± 1.65 0.02 ± 0.03 0.92 ± 0.10
MCMC-0.10 10.5 ± 3.49 0.25 ± 0.63 5.58 ± 1.55 0.02 ± 0.03 0.92 ± 0.10

Random-0.15
20.3 ± 5.51 4.10 ± 4.47

12.2 ± 3.63 0.45 ± 1.02 6.18 ± 1.51 0.06 ± 0.06 0.83 ± 0.15
MCMC-0.15 12.2 ± 3.66 0.48 ± 1.06 5.85 ± 1.54 0.06 ± 0.06 0.83 ± 0.16

Random-0.20
18.0 ± 5.99 10.2 ± 8.72

12.8 ± 3.90 0.91 ± 1.33 6.78 ± 1.67 0.14 ± 0.12 0.67 ± 0.23
MCMC-0.20 12.8 ± 3.88 0.95 ± 1.29 6.20 ± 1.69 0.14 ± 0.12 0.67 ± 0.23

Random-0.25
11.8 ± 6.72 21.3 ± 10.3

9.81 ± 3.82 1.49 ± 1.42 6.19 ± 1.72 0.29 ± 0.14 0.40 ± 0.22
MCMC-0.25 10.1 ± 3.67 1.18 ± 1.17 6.08 ± 1.86 0.29 ± 0.14 0.41 ± 0.22

Random-0.30
8.17 ± 4.93 29.6 ± 9.81

7.69 ± 2.96 2.17 ± 1.68 6.14 ± 1.73 0.41 ± 0.13 0.24 ± 0.15
MCMC-0.30 7.71 ± 2.96 2.15 ± 1.56 6.27 ± 1.66 0.41 ± 0.13 0.23 ± 0.14

Table C.8
The ratio of reduced intervention times by MaxEnt relative to random strategy and 
the ratio of marks learned by orientation rules under CS and CIS over 100 simula-
tions with varying d and p in the format of mean ± std.

d p #diff-CIS #diff-CS %rule-CIS %rule-CS

6

0.10 2.62 ± 1.58% 8.11± 4.33% 14.9 ± 1.78% 52.6± 12.2%
0.15 2.53 ± 2.11% 13.3± 4.90% 15.0 ± 3.21% 54.8± 11.1%
0.20 3.48 ± 2.18% 15.5± 5.09% 16.0 ± 2.07% 57.8± 8.49%
0.25 3.97 ± 1.37% 16.4± 5.75% 15.8 ± 1.97% 58.3± 7.08%
0.30 3.64 ± 2.22% 18.0± 6.06% 16.7 ± 2.07% 59.9± 7.52%

8

0.10 4.02 ± 2.80% 14.0± 4.64% 18.5 ± 2.58% 59.4± 5.41%
0.15 6.48 ± 2.27% 16.9± 3.98% 21.0 ± 1.92% 62.1± 4.88%
0.20 6.63 ± 3.78% 19.9± 3.78% 21.0 ± 2.26% 65.6± 5.94%
0.25 6.26 ± 1.59% 22.0± 3.62% 21.2 ± 1.11% 66.8± 4.77%
0.30 5.79 ± 1.61% 23.2± 5.13% 21.6 ± 1.42% 67.1± 3.81%

(continued on next page)
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Table C.8 (continued)

d p #diff-CIS #diff-CS %rule-CIS %rule-CS

10

0.10 5.13 ± 1.79% 14.2± 2.17% 19.8 ± 1.65% 61.6± 3.28%
0.15 6.21 ± 2.93% 17.0± 4.05% 21.1 ± 1.76% 65.2± 3.61%
0.20 7.64 ± 1.60% 21.4± 4.21% 22.1 ± 0.87% 67.3± 3.21%
0.25 6.73 ± 1.73% 23.4± 3.10% 21.2 ± 1.61% 68.9± 2.59%
0.30 6.14 ± 1.92% 22.1± 4.14% 21.4 ± 1.08% 69.3± 2.27%

12

0.10 6.77 ± 1.29% 16.4± 1.41% 21.0 ± 1.64% 66.2± 2.01%
0.15 8.15 ± 1.50% 18.9± 3.82% 21.5 ± 1.06% 66.7± 2.69%
0.20 8.16 ± 1.66% 24.5± 3.68% 20.6 ± 1.99% 70.3± 2.67%
0.25 6.96 ± 1.69% 24.2± 2.71% 20.2 ± 1.24% 71.0± 2.26%
0.30 6.52 ± 1.19% 24.7± 6.66% 21.4 ± 1.66% 72.2± 3.06%

14

0.10 6.45 ± 1.72% 19.7± 3.60% 20.7 ± 1.34% 66.3± 2.40%
0.15 6.72 ± 2.02% 22.2± 6.54% 20.8 ± 1.12% 69.6± 4.44%
0.20 7.43 ± 1.52% 24.6± 5.06% 20.4 ± 0.74% 70.7± 1.87%
0.25 5.90 ± 1.84% 24.7± 4.94% 19.5 ± 1.04% 71.9± 2.64%
0.30 5.28 ± 0.65% 25.0± 4.11% 19.7 ± 0.70% 73.0± 1.54%

16

0.10 7.79 ± 1.93% 18.3± 4.16% 22.4 ± 1.55% 66.9± 2.30%
0.15 6.82 ± 1.43% 24.5± 2.92% 20.6 ± 1.35% 71.2± 1.65%
0.20 6.45 ± 1.87% 24.2± 2.93% 19.7 ± 1.34% 71.0± 2.19%
0.25 6.16 ± 1.16% 23.0± 3.16% 19.1 ± 1.47% 72.4± 2.01%
0.30 4.86 ± 1.50% 24.3± 2.01% 19.2 ± 1.48% 73.3± 1.63%
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